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Purpose Add lifting steps to lifting scheme

Syntax LSN = addlift(LS,ELS)
LSN = addlift(LS,ELS,'begin')
LSN = addlift(LS,ELS,'end')
addfilt(LS,ELS)

Description LSN = addlift(LS,ELS) returns the new lifting scheme LSN obtained
by appending the elementary lifting step ELS to the lifting scheme LS.

LSN = addlift(LS,ELS,'begin') prepends the specified elementary
lifting step.

ELS is either a cell array (see lsinfo)

{TYPEVAL, COEFS, MAX_DEG}

or a structure (see liftfilt)

struct('type',TYPEVAL,'value',LPVAL)

with

LPVAL = laurpoly(COEFS, MAX_DEG)

LSN = addlift(LS,ELS,'end') is equivalent to addfilt(LS,ELS).

If ELS is a sequence of elementary lifting steps, stored in a cell array
or an array of structures, then each of the elementary lifting steps is
added to LS.

For more information about lifting schemes, see lsinfo.

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

% Visualize the obtained lifting scheme.
displs(lshaar);

lshaar = {...
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'd' [ -1.00000000] [0]
'p' [ 0.50000000] [0]
[ 1.41421356] [ 0.70710678] []
};

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
displs(lsnew);

lsnew = {...
'd' [ -1.00000000] [0]
'p' [ 0.50000000] [0]
'p' [ -0.12500000 0.12500000] [0]
[ 1.41421356] [ 0.70710678] []
};

See Also liftfilt
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Purpose Tree nodes

Syntax N = allnodes(T)
N = allnodes(T,'deppos')

Description allnodes is a tree management utility that returns one of two node
descriptions: either indices, or depths and positions.

The nodes are numbered from left to right and from top to bottom. The
root index is 0.

N = allnodes(T) returns the indices of all the nodes of the tree T in
column vector N.

N = allnodes(T,'deppos') returns the depths and positions of all the
nodes in matrix N.

N(i,1) is the depth and N(i,2) the position of the node i.

Examples % Create initial tree.
ord = 2;
t = ntree(ord,3); % Binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).
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% List t nodes (index).
aln_ind = allnodes(t)
aln_ind =

0
1
2
3
4
5
6
7
8

13
14

% List t nodes (Depth_Position).
aln_depo = allnodes(t,'deppos')
aln_depo =

0 0
1 0
1 1
2 0
2 1
2 2
2 3
3 0
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3 1
3 6
3 7
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Purpose 1-D approximation coefficients

Syntax A = appcoef(C,L,'wname',N)
A = appcoef(C,L,'wname')
A = appcoef(C,L,Lo_R,Hi_R)
A = appcoef(C,L,Lo_R,Hi_R,N)

Description appcoef is a one-dimensional wavelet analysis function.

appcoef computes the approximation coefficients of a one-dimensional
signal.

A = appcoef(C,L,'wname',N) computes the approximation coefficients
at level N using the wavelet decomposition structure [C,L] (see wavedec
for more information).

'wname' is a string containing the wavelet name. Level N must be an
integer such that 0 ≤ N ≤ length(L)-2.

A = appcoef(C,L,'wname') extracts the approximation coefficients at
the last level: length(L)-2.

Instead of giving the wavelet name, you can give the filters.

For A = appcoef(C,L,Lo_R,Hi_R) or A =
appcoef(C,L,Lo_R,Hi_R,N), Lo_R is the reconstruction low-pass filter
and Hi_R is the reconstruction high-pass filter (see wfilters for more
information).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load a one-dimensional signal.
load leleccum; s = leleccum(1:3920);

% Perform decomposition at level 3 of s using db1.
[c,l] = wavedec(s,3,'db1');

% Extract approximation coefficients at level 3, from the
% wavelet decomposition structure [c,l].

1-12



appcoef

ca3 = appcoef(c,l,'db1',3);
% Using some plotting commands,
% the following figure is generated.

Algorithms The input vectors C and L contain all the information about the signal
decomposition.

Let NMAX = length(L)-2; then C = [A(NMAX) D(NMAX) ... D(1)]
where A and the D are vectors.

If N = NMAX, then a simple extraction is done; otherwise, appcoef
computes iteratively the approximation coefficients using the inverse
wavelet transform.

See Also detcoef | wavedec
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Purpose 2-D approximation coefficients

Syntax A = appcoef2(C,S,'wname',N)
A = appcoef2(C,S,'wname')
A = appcoef2(C,S,Lo_R,Hi_R)
A = appcoef2(C,S,Lo_R,Hi_R,N)

Description appcoef2 is a two-dimensional wavelet analysis function. It computes
the approximation coefficients of a two-dimensional signal. The
syntaxes allow you to give the wavelet name or the filters as inputs.

A = appcoef2(C,S,'wname',N) computes the approximation
coefficients at level N using the wavelet decomposition structure [C,S]
(see wavedec2 for more information).

'wname'is a string containing the wavelet name. Level N must be an
integer such that 0 ≤ N ≤ size(S,1)-2.

A = appcoef2(C,S,'wname') extracts the approximation coefficients
at the last level: size(S,1)-2.

A = appcoef2(C,S,Lo_R,Hi_R) or A = appcoef2(C,S,Lo_R,Hi_R,N),
Lo_R is the reconstruction low-pass filter and Hi_R is the reconstruction
high-pass filter (see wfilters for more information).

Tips If C and S are obtained from an indexed image analysis or a truecolor
image analysis, A is an m-by-n matrix or an m-by-n-by-3 array,
respectively.

For more information on image formats, see the image and imfinfo
reference pages.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image.
load woman;

% X contains the loaded image.
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% Perform decomposition at level 2
% of X using db1.
[c,s] = wavedec2(X,2,'db1');
sizex = size(X)
sizex =

256 256

sizec = size(c)

sizec =
1 65536

val_s = s

val_s =
64 64
64 64

128 128
256 256

% Extract approximation coefficients
% at level 2.
ca2 = appcoef2(c,s,'db1',2);
sizeca2 = size(ca2)

sizeca2 =
64 64

% Compute approximation coefficients
% at level 1.
ca1 = appcoef2(c,s,'db1',1);
sizeca1 = size(ca1)

sizeca1 =
128 128

Algorithms The algorithm is built on the same principle as appcoef.
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See Also detcoef2 | wavedec2
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Purpose Best level tree wavelet packet analysis

Syntax T = bestlevt(T)
[T,E] = bestlevt(T)

Description bestlevt is a one- or two-dimensional wavelet packet analysis function.

bestlevt computes the optimal complete subtree of an initial tree with
respect to an entropy type criterion. The resulting complete tree may be
of smaller depth than the initial one.

T = bestlevt(T) computes the modified wavelet packet tree T
corresponding to the best level tree decomposition.

[T,E] = bestlevt(T) computes the best level tree T, and in addition,
the best entropy value E.

The optimal entropy of the node, whose index is j-1, is E(j).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal.
load noisdopp;
x = noisdopp;

% Decompose x at depth 3 with db1 wavelet, using default
% entropy (shannon).
wpt = wpdec(x,3,'db1');

% Decompose the packet [3 0].
wpt = wpsplt(wpt,[3 0]);

% Plot wavelet packet tree wpt.
plot(wpt)
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% Compute best level tree.
blt = bestlevt(wpt);

% Plot best level tree blt.
plot(blt)

Algorithms See besttree algorithm section. The only difference is that the optimal
tree is searched among the complete subtrees of the initial tree, instead
of among all the binary subtrees.

See Also besttree | wenergy | wpdec | wpdec2
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Purpose Best tree wavelet packet analysis

Syntax T = besttree(T)
[T,E] = besttree(T)
[T,E,N] = besttree(T)

Description besttree is a one- or two-dimensional wavelet packet analysis function
that computes the optimal subtree of an initial tree with respect to an
entropy type criterion. The resulting tree may be much smaller than
the initial one.

Following the organization of the wavelet packets library, it is natural
to count the decompositions issued from a given orthogonal wavelet.

A signal of length N = 2L can be expanded in α different ways, where α
is the number of binary subtrees of a complete binary tree of depth L.

As a result, we can conclude that α ≥ 2N/2 (for more information, see the
Mallat’s book given in References at page 323).

This number may be very large, and since explicit enumeration is
generally intractable, it is interesting to find an optimal decomposition
with respect to a convenient criterion, computable by an efficient
algorithm. We are looking for a minimum of the criterion.

T = besttree(T) computes the best tree T corresponding to the best
entropy value.

[T,E] = besttree(T) computes the best tree T and, in addition, the
best entropy value E.

The optimal entropy of the node, whose index is j-1, is E(j).

[T,E,N] = besttree(T) computes the best tree T, the best entropy
value E and, in addition, the vector N containing the indices of the
merged nodes.

Examples % Set dwtmode to periodization
dwtmode('per');
% Load signal.
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load noisdopp;
% Decompose noisdopp to level 4 with sym4 wavelet using default
% entropy (shannon).
wpt = wpdec(noisdopp,4,'sym4');
plot(wpt);

% Compute best tree.
bt = besttree(wpt);
% Plot best tree bt.
plot(bt)
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Algorithms Consider the one-dimensional case. Starting with the root node, the
best tree is calculated using the following scheme. A node N is split into
two nodes N1 and N2 if and only if the sum of the entropy of N1 and N2
is lower than the entropy of N. This is a local criterion based only on the
information available at the node N.

Several entropy type criteria can be used (see wenergy for more
information). If the entropy function is an additive function along the
wavelet packet coefficients, this algorithm leads to the best tree.

Starting from an initial tree T and using the merging side of this
algorithm, we obtain the best tree among all the binary subtrees of T.

References Coifman, R.R.; M.V. Wickerhauser (1992), “Entropy-based algorithms
for best basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp.
713–718.

Mallat, S. (1998), A wavelet tour of signal processing, Academic Press.

See Also bestlevt | wenergy | wpcoef | wpdec | wpdec2 | wprcoef

How To • “Reconstructing a Signal Approximation from a Node”
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Purpose Biorthogonal wavelet filter set

Syntax [Lo_D,Hi_D,Lo_R,Hi_R] = biorfilt(DF,RF)
[Lo_D1,Hi_D1,Lo_R1,Hi_R1,Lo_D2,Hi_D2,Lo_R2,

Hi_R2] = biorfilt(DF,RF,'8')

Description The biorfilt command returns either four or eight filters associated
with biorthogonal wavelets.

[Lo_D,Hi_D,Lo_R,Hi_R] = biorfilt(DF,RF) computes four filters
associated with the biorthogonal wavelet specified by decomposition
filter DF and reconstruction filter RF. These filters are

Lo_D Decomposition low-pass filter

Hi_D Decomposition high-pass filter

Lo_R Reconstruction low-pass filter

Hi_R Reconstruction high-pass filter

[Lo_D1,Hi_D1,Lo_R1,Hi_R1,Lo_D2,Hi_D2,Lo_R2, Hi_R2] =
biorfilt(DF,RF,'8') returns eight filters, the first four associated
with the decomposition wavelet, and the last four associated with the
reconstruction wavelet.

It is well known in the subband filtering community that if the same
FIR filters are used for reconstruction and decomposition, then
symmetry and exact reconstruction are incompatible (except with the
Haar wavelet). Therefore, with biorthogonal filters, two wavelets are
introduced instead of just one:

One wavelet,  , is used in the analysis, and the coefficients of a signal
s are

 c s x x dxj k j k, ,( ) ( )= ∫ 

The other wavelet, ψ, is used in the synthesis:
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s c j k
j k

j k= ∑  ,
,

,

Furthermore, the two wavelets are related by duality in the following
sense:

 j k j kx x dx, ,( ) ( )∫ ′ ′ = 0 as soon as j ≠ j′ or k ≠ k′ and

 0 0 0, ,( ) ( )k kx x dx∫ ′ = as soon as k ≠ k′.

It becomes apparent, as A. Cohen pointed out in his thesis (p. 110), that
“the useful properties for analysis (e.g., oscillations, null moments) can

be concentrated in the  function; whereas, the interesting properties
for synthesis (regularity) are assigned to the ψ function. The separation
of these two tasks proves very useful.”

 and ψ can have very different regularity properties, ψ being more

regular than  .

The  , ψ,  and ϕ functions are zero outside a segment.

Examples % Compute the four filters associated with spline biorthogonal
% wavelet 3.5: bior3.5.

% Find the two scaling filters associated with bior3.5.
[Rf,Df] = biorwavf('bior3.5');

% Compute the four filters needed.
[Lo_D,Hi_D,Lo_R,Hi_R] = biorfilt(Df,Rf);
subplot(221); stem(Lo_D);
title('Dec. low-pass filter bior3.5');
subplot(222); stem(Hi_D);
title('Dec. high-pass filter bior3.5');
subplot(223); stem(Lo_R);
title('Rec. low-pass filter bior3.5');
subplot(224); stem(Hi_R);
title('Rec. high-pass filter bior3.5');
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% Editing some graphical properties,
% the following figure is generated.

% Orthogonality by dyadic translation is lost.
nzer = [Lo_D 0 0]*[0 0 Lo_D]'
nzer =

-0.6881
nzer = [Hi_D 0 0]*[0 0 Hi_D]'
nzer =

0.1875

% But using duality we have:
zer = [Lo_D 0 0]*[0 0 Lo_R]'
zer =

-2.7756e-17
zer = [Hi_D 0 0]*[0 0 Hi_R]'
zer =

2.7756e-17
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% But, perfect reconstruction via DWT is preserved.
x = randn(1,500);
[a,d] = dwt(x,Lo_D,Hi_D);
xrec = idwt(a,d,Lo_R,Hi_R);
err = norm(x-xrec)
err =

5.0218e-15

% High and low frequency illustration.
fftld = fft(Lo_D); ffthd = fft(Hi_D);
freq = [1:length(Lo_D)]/length(Lo_D);
subplot(221); plot(freq,abs(fftld),freq,abs(ffthd));
title('Transfer modulus for dec. filters')
fftlr = fft(Lo_R); ffthr = fft(Hi_R);
freq = [1:length(Lo_R)]/length(Lo_R);
subplot(222); plot(freq,abs(fftlr),freq,abs(ffthr));
title('Transfer modulus for rec. filters')
subplot(223); plot(freq, abs(fftlr.*fftld + ffthd.*ffthr));
title('One biorthogonality condition')
xlabel('|fft(Lo_R)fft(Lo_D) + fft(Hi_R)fft(Hi_D)| = 2')

% Editing some graphical properties,
% the following figure is generated.
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Note For biorthogonal wavelets, the filters for decomposition and
reconstruction are generally of different odd lengths. This situation
occurs, for example, for “splines” biorthogonal wavelets used in the
toolbox where the four filters are zero-padded to have the same even
length.

References Cohen, A. (1992), “Ondelettes, analyses multirésolution et traitement
numérique du signal,” Ph. D. Thesis, University of Paris IX,
DAUPHINE.

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference
series in applied mathematics. SIAM Ed.

See Also biorwavf | orthfilt

1-26



biorwavf

Purpose Biorthogonal spline wavelet filters

Syntax [RF,DF] = biorwavf(W)

Description [RF,DF] = biorwavf(W) returns two scaling filters associated with the
biorthogonal wavelet specified by the string W.

W = 'biorNr.Nd' where possible values for Nr and Nd are

Nr = 1 Nd = 1 , 3 or 5

Nr = 2 Nd = 2 , 4 , 6 or 8

Nr = 3 Nd = 1 , 3 , 5 , 7 or 9

Nr = 4 Nd = 4

Nr = 5 Nd = 5

Nr = 6 Nd = 8

The output arguments are filters.

• RF is the reconstruction filter.

• DF is the decomposition filter.

Examples % Set spline biorthogonal wavelet name.
wname = 'bior2.2';

% Compute the two corresponding scaling filters.
% rf is the reconstruction scaling filter.
% df is the decomposition scaling filter.
[rf,rd] = biorwavf(wname)

rf =
0.2500 0.5000 0.2500

df =
-0.1250 0.2500 0.7500 0.2500 -0.1250
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See Also biorfilt | waveinfo
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Purpose Biorthogonal scaling and wavelet functions

Syntax [PHIS,PSIS,PHIA,PSIA,XVAL] = bswfun(LoD,HiD,LoR,HiR)
bswfun(LoD,HiD,LoR,HiR,ITER)
bswfun(LoD,HiD,LoR,HiR,'plot')
bswfun(LoD,HiD,LoR,HiR,ITER,'plot')
bswfun(LoD,HiD,LoR,HiR,'plot',ITER)

Description [PHIS,PSIS,PHIA,PSIA,XVAL] = bswfun(LoD,HiD,LoR,HiR) returns
approximations on the grid XVAL of the two pairs of scaling function
and wavelet (PHIA,PSIA), (PHIS,PSIS) associated with the two pairs
of filters (LoD,HiD), (LoR,HiR).

bswfun(LoD,HiD,LoR,HiR,ITER) computes the two pairs of scaling and
wavelet functions using ITER iterations.

bswfun(LoD,HiD,LoR,HiR,'plot') or
bswfun(LoD,HiD,LoR,HiR,ITER,'plot') or
bswfun(LoD,HiD,LoR,HiR,'plot',ITER) computes and plots the
functions.

Examples % Start from the Cohen-Daubechies-Feauveau wavelet
% and get the corresponding lifting scheme.
lscdf = liftwave('cdf3.1');

% Visualize the obtained lifting scheme.
displs(lscdf);

lscdf = {...
'p' [ -0.33333333] [-1]
'd' [ -0.37500000 -1.12500000] [1]
'p' [ 0.44444444] [0]
[ 2.12132034] [ 0.47140452] []
};

% Transform the lifting scheme to biorthogonal
% filters quadruplet.
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[LoD,HiD,LoR,HiR] = ls2filt(lscdf);

% Visualize the two pairs of scaling and wavelet
% functions.
bswfun(LoD,HiD,LoR,HiR,'plot');

Algorithms This function uses the cascade algorithm.

See Also wavefun

1-30



centfrq

Purpose Wavelet center frequency

Syntax FREQ = centfrq('wname')
FREQ = centfrq('wname',ITER)
[FREQ,XVAL,RECFREQ] = centfrq('wname',ITER,'plot')

Description FREQ = centfrq('wname') returns the center frequency in herz of the
wavelet function, 'wname'(see wavefun for more information).

For FREQ = centfrq('wname',ITER), ITER is the number of iterations
performed by the function wavefun, which is used to compute the
wavelet.

[FREQ,XVAL,RECFREQ] = centfrq('wname',ITER,'plot') returns,
in addition, the associated center frequency based approximation
RECFREQ on the 2ITER points grid XVAL and plots the wavelet function
and RECFREQ.

Examples % Example 1: a real wavelet
wname = 'db2';

% Compute the center frequency and display
% the wavelet function and the associated
% center frequency based approximation.
iter = 8;
cfreq = centfrq(wname,8,'plot')

cfreq =
0.6667
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% Example 2: a complex wavelet
wname = 'cgau6';

% Compute the center frequency and display
% the wavelet function and the associated
% center frequency based approximation.
cfreq = centfrq(wname,8,'plot')

cfreq =

0.6000
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See Also scal2frq | wavefun
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Purpose Wavelet packet tree construction from coefficients

Syntax

Description CFS2WPT builds a wavelet packet tree (T) and the related analyzed
signal or image (X) using the following input information:

WNAME: name of the wavelet used for the analysis

SIZE_OF_DATA: size of the analyzed signal or image

TN_OF_TREE: vector containing the terminal node indices of the tree

ORDER: 2 for a signal or 4 for an image

CFS: coefficients used to reconstruct the original signal or image. CFS
is optional. When CFS2WPT is used without the CFS input parameter,
the wavelet packet tree structure (T) is generated, but all the tree
coefficients are null (including X).

Examples % Example 1: Using cfs2wpt with the CFS argument

% Loading an image
load detail

% Building the wavelet packet tree decomposition
t = wpdec2(X,2,'sym4');

% Reading the coefficient values from the tree
cfs = read(t,'allcfs');

% Adding noise to the coefficients
noisyCfs = cfs + 40*rand(size(cfs));

% Building the wavelet packet tree object and the reconstructed
% noisy image from the noisyCfs using cfs2wpt
noisyT = cfs2wpt('sym4',size(X),tnodes(t),4,noisyCfs);

% Plotting the new tree and clicking the node (0) or (0,0)
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plot(noisyT)

% Example 2: Using cfs2wpt without the CFS argument

% Building an empty wavelet packet tree object
t = cfs2wpt('sym4',[1 1024],[3 9 10 2]',2);

% Getting the terminal node sizes
sN = read(t,'sizes',[3,9]);
sN3 = sN(1,:); sN9 = sN(2,:);

% Building coefficient values vectors and writing them in the tree
cfsN3 = ones(sN3);
cfsN9 = randn(sN9);
t = write(t,'cfs',3,cfsN3,'cfs',9,cfsN9);
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% Plotting the updated tree and clicking the node (9) or (3,2)
plot(t)
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Purpose Complex Gaussian wavelet

Syntax [PSI,X] = cgauwavf(LB,UB,N,P)
[PSI,X] = cgauwavf(LB,UB,N)
[PSI,X] = cgauwavf(LB,UB,N,1)

Description [PSI,X] = cgauwavf(LB,UB,N,P) returns values of the P-th derivative
of the complex Gaussian function on an N point regular grid for the
interval [LB,UB]. Cp is such that the 2-norm of the P-th derivative of
F is equal to 1.

For P > 8, Symbolic Math Toolbox™ software is required.

Output arguments are the wavelet function PSI computed on the grid X.

[PSI,X] = cgauwavf(LB,UB,N) is equivalent to
[PSI,X] = cgauwavf(LB,UB,N,1)

These wavelets have an effective support of [-5 5].

Examples % Set effective support and grid parameters.
lb = -5; ub = 5; n = 1000;

% Compute complex Gaussian wavelet of order 4.
[psi,x] = cgauwavf(lb,ub,n,4);

% Plot complex Gaussian wavelet of order 4.
subplot(211)
plot(x,real(psi)),
title('Complex Gaussian wavelet of order 4')
xlabel('Real part'), grid
subplot(212)
plot(x,imag(psi))
xlabel('Imaginary part'), grid
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See Also waveinfo
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Purpose Change multisignal 1-D decomposition coefficients

Syntax DEC = chgwdeccfs(DEC,'ca',COEFS)
DEC = chgwdeccfs(DEC,'cd',COEFS,LEV)
DEC = chgwdeccfs(DEC,'all',CA,CD)
DEC = chgwdeccfs(DEC,'all',V)
DEC = chgwdeccfs(...,IDXSIG)

Description DEC = chgwdeccfs(DEC,'ca',COEFS) replaces the approximation
coefficients at level DEC.level with those contained in the matrix
COEFS. If COEFS is a single value V, all coefficients are replaced by V.

DEC = chgwdeccfs(DEC,'cd',COEFS,LEV) replaces the detail
coefficients at level LEV with those contained in the matrix COEFS. If
COEFS is a single value V, then LEV can be a vector of levels and all the
coefficients that belong to these levels are replaced by V. LEV must be
such that 1 ≤ LEV ≤ DEC.level

DEC = chgwdeccfs(DEC,'all',CA,CD) replaces all the approximation
and detail coefficients. CA must be a matrix and CD must be a cell array
of length DEC.level.

If COEFS (or CA or CD) is a single number, then it replaces all the
related coefficients. Otherwise, COEFS (or CA, or CD) must be a matrix
of appropriate size.

For a real value V, DEC = chgwdeccfs(DEC,'all',V) replaces all the
coefficients by V.

DEC = chgwdeccfs(...,IDXSIG) replaces the coefficients for the
signals whose indices are given by the vector IDXSIG. If the initial data
are stored row-wise or column-wise in a matrix X, then IDXSIG contains
the row or column indices, respectively, of the data.

Examples % Load original 1D-multisignal
load thinker

% Perform a decomposition at level 2 using wavelet db2
dec = mdwtdec('r',X,2,'db2');
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% Change the coefficients of details at level 1.
% Replace all values by 0.
decBIS = chgwdeccfs(dec,'cd',0,1);

% Change the coefficients of details at level 1 and
% level 2 for signals 31 to 35. Replace all values by 0.
decTER = chgwdeccfs(dec,'cd',0,1:2,31:35);

% Compare original and new coefficients for details
% at level 1 for signals 31 to 35.
plot(dec.cd{1}(31:35,:)','b'); hold on;
plot(decTER.cd{1}(31:35,:)','r')

See Also mdwtdec | mdwtrec
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Purpose Interval-dependent denoising

Syntax sigden = cmddenoise(sig,wname,level)
sigden = cmddenoise(sig,wname,level,sorh)
sigden = cmddenoise(sig,wname,level,sorh,nb_inter)
sigden = cmddenoise(sig,wname,level,sorh,nb_inter,

thrParamsIn)

[sigden,coefs] = cmddenoise( ___ )
[sigden,coefs,thrParamsOut] = cmddenoise( ___ )

[sigden,coefs,thrParamsOut,int_DepThr_Cell]
= cmddenoise(sig,

wname,level,sorh,nb_inter)
[sigden,coefs,thrParamsOut,int_DepThr_Cell,

BestNbofInt] = cmddenoise(sig,wname,level,sorh,nb_inter)

Description sigden = cmddenoise(sig,wname,level) returns the denoised signal,
sigden, obtained from an interval-dependent denoising of the signal,
sig, using the orthogonal or biorthogonal wavelet and scaling filters,
wname. cmddenoise thresholds the wavelet (detail) coefficients down
to level, level, and reconstructs a signal approximation using the
modified detail coefficients. cmddenoise partitions the signal into
intervals based on variance change points in the first level detail
coefficients and thresholds each interval separately. The location
and number of variance change points are automatically selected
using a penalized contrast function [2]. The minimum delay between
change points is 10 samples. Thresholds are obtained using a minimax
threshold rule and soft thresholding is used to modify the wavelet
coefficients [1] .

sigden = cmddenoise(sig,wname,level,sorh) returns the denoised
signal, sigden, using the thresholding method, sorh, to modify the
wavelet coefficients. Valid choices for sorh are 's' for soft thresholding
or 'h' for hard thresholding.
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sigden = cmddenoise(sig,wname,level,sorh,nb_inter) returns the
denoised signal, sigden, with the number of denoising intervals as a
positive integer between 1 and 6: 1≤ nb_inter ≤6. For nb_inter ≥ 2,
cmddenoise estimates the location of the change points with a contrast
function [2].

sigden = cmddenoise(sig,wname,level,sorh,nb_inter,
thrParamsIn) returns the denoised signal, sigden, with the denoising
intervals and corresponding thresholds specified as a cell array of
matrices with length equal to level. Each element of the cell array
contains the interval and threshold information for the corresponding
level of the wavelet transform. The elements of thrParamsIn are
N-by-3 matrices with N equal to the number of intervals. The 1st and
2nd columns contain the beginning and ending indices of the intervals
and the 3rd column contains the corresponding threshold value. If you
specify thrParamsIn, cmddenoise ignores the value of nb_inter.

[sigden,coefs] = cmddenoise( ___ ) returns the approximation
(scaling) and detail (wavelet) coefficients, coefs. The organization of
coefs is identical to the structure returned by wavedec. This syntax
can include any of the input arguments used in previous syntaxes.

[sigden,coefs,thrParamsOut] = cmddenoise( ___ ) returns a cell
array, thrParamsOut, with length equal to level. Each element
of thrParamsOut is an N-by-3 matrix. The row dimension of the
matrix elements is the number of intervals and is determined by the
value of the input arguments. Each row of the matrix contains the
beginning and end points (indices) of the thresholded interval and the
corresponding threshold value.

[sigden,coefs,thrParamsOut,int_DepThr_Cell] =
cmddenoise(sig, wname,level,sorh,nb_inter) returns a cell array,
int_DepThr_Cell, with length equal to 6. int_DepThr_Cell contains
interval and threshold information assuming the number of change
points ranges from 0 to 5. The N-th element of int_DepThr_Cell is a
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N-by-3 matrix containing the interval information assuming N-1 change
points. Each row of the matrix contains the beginning and end points
(indices) of the thresholded interval and the corresponding threshold
value. Attempting to output int_DepThr_Cell if you use the input
argument, thrParamsIn, results in an error.

[sigden,coefs,thrParamsOut,int_DepThr_Cell, BestNbofInt] =
cmddenoise(sig,wname,level,sorh,nb_inter) returns the optimal
number of signal intervals based on the estimated variance change
points in the level-1 detail coefficients. To estimate the number of
change points, cmddenoise assumes the total number is less than or
equal to 6 and uses a penalized contrast [2]. Attempting to output
BestNbofInt if you use the input argument, thrParamsIn, results
in an error.

Input
Arguments

sig - Signal for interval-dependent denoising
1-D row or column vector

Input signal, specified as a 1-D row or column vector. sig is the
real-valued input signal for interval-dependent denoising. The elements
of sig are assumed to be equally spaced in time or space. If sig
contains unequally-sampled data, cmddenoise is not appropriate. Use a
lifting transform instead. See lwt for details.

Data Types
double

wname - Wavelet name
string

Wavelet name, specified as a character array. wname is any valid
orthogonal or biorthogonal wavelet. You can use the command: wtype
= wavemngr('fields',wname,'type','file'); to determine if the
wavelet name is valid to use with cmddenoise. Valid wavelet names
return a 1 or 2 for wtype.

Example: 'bior2.2', 'db4', 'sym4'
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Data Types
char

level - Level of the decimated wavelet transform (multiresolution
analysis)
positive integer

Wavelet transform (multiresolution analysis) level, specified as
a positive integer. level gives the level of the multiresolution
decomposition of the input signal using the decimated 1-D discrete
wavelet transform, wavedec.

Data Types
double

sorh - Threshold rule
's' (default) | 'h'

Thresholding rule, specified as a character array. sorh is the threshold
rule used in the modification of the detail coefficients. Valid choices for
sorh are 's' (default) and 'h' for soft and hard thresholding.

nb_inter - Number of intervals
positive integer in the set {1,2,3,4,5,6} | NaN

Number of intervals, specified as a positive integer less than 7.
cmddenoise divides the input signal into nb_inter intervals.
cmddenoise determines the location of the nb_inter change points
using a contrast function [2]. If you enter NaN for nb_inter, cmddenoise
ignores the input. If you use the input argument thrParamsIn,
cmddenoise disregards any value you enter for nb_inter.

Data Types
double

thrParamsIn - Intervals and thresholds by level
cell array of matrices

Intervals and thresholds by level, specified as a cell array of matrices
equal in length to level. Each element of thrParamsIn contains the
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interval and threshold information for the corresponding level of the
multiresolution analysis. The elements of thrParamsIn are N-by-3
matrices with N equal to the number of intervals. The 1st and 2nd
columns contain the beginning and ending indices of the intervals
and the 3rd column contains the corresponding threshold value. If
you specify thrParamsIn, you cannot specify the output arguments
int_DepThr_Cell or BestNbofInt.

Data Types
cell

Output
Arguments

sigden - Denoised signal
1-D row or column vector

sigden is the denoised version of the input sig. sigden is a 1-D row
vector equal in length to sig.

coefs - Approximation coefficients and thresholded wavelet
coefficients
1-D row vector of approximation coefficients and thresholded wavelet
coefficients

coefs is a row vector of approximation (scaling) and thresholded
detail (wavelet) coefficients. The ordering of the approximation and
detail coefficients by level in coefs is the same as the output of
wavedec. cmddenoise does not apply thresholding to the approximation
coefficients.

Data Types
double

thrParamsOut - Intervals and thresholds by level
cell array of matrices

thrParamsOut is a cell array of matrices equal in length to level.
Each element of the cell array contains the interval and threshold
information for the corresponding level of the multiresolution analysis.
The elements of thrParamsOut are N-by-3 matrices with N equal to
the number of intervals. N is determined by the value of the input
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arguments. The 1st and 2nd columns contain the beginning and ending
indices of the intervals and the 3rd column contains the corresponding
threshold value.

Data Types
cell

int_DepThr_Cell - Intervals and thresholds assuming 0 to 5
change points
cell array of matrices

int_DepThr_Cell contains interval and threshold information
assuming the number of change points ranges from 0 to 5. The N-th
element of int_DepThr_Cell is a N-by-3 matrix containing the
interval information assuming N-1 change points. Each row of the
matrix contains the beginning and ending indices of the thresholded
interval and the corresponding threshold value. Attempting to output
int_DepThr_Cell if you input the number of intervals and thresholds,
thrParamsIn, results in an error. int_DepThr_Cell{BestNbofInt}
or int_DepThr_Cell{nb_inter} is equal to the matrix elements of
thrParamsOut.

Data Types
cell

BestNbofInt - Optimal number of intervals
positive integer ≤6

BestNbofInt is the optimal number of intervals based on estimated
change points in the variance of the level-1 detail coefficients. The
number and location of the change points are estimated using a
penalized contrast method [2]. Attempting to output BestNbofInt
if you input the number of intervals and thresholds, thrParamsIn,
results in an error.
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Examples Denoising Blocks Signal with Haar Wavelet

Load the noisy blocks signal, nblocr1.mat. The signal consists of a
piecewise constant signal in addtive white Gaussian noise. The variance
of the additive noise differs in three disjoint intervals.

load nblocr1;

Apply interval-dependent denoising down to level 4 using the Haar
wavelet. cmddenoise automatically determines the optimal number
and locations of the variance change points. Plot the denoised and
original signal for comparison.

sigden = cmddenoise(nblocr1,'db1',4);
plot(nblocr1);
hold on;
plot(sigden,'r','linewidth',2);
axis tight;
legend('Original Signal','Denoised Signal','Location','NorthWest');
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Denoising Blocks Signal with Hard Thresholding

Load the noisy blocks signal, nblocr1.mat. The signal consists of
a piecewise constant signal in additive white Gaussian noise. The
variance of the additive noise differs in three disjoint intervals.

load nblocr1;

Apply interval-dependent denoising down to level 4 using the Haar
wavelet and a hard thresholding rule. cmddenoise automatically
determines the optimal number and locations of the intervals. Plot
the original and denoised signals.
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sorh = 'h';
sigden = cmddenoise(nblocr1,'db1',4,sorh);
plot(nblocr1);
hold on;
plot(sigden,'r','linewidth',2);
axis tight;
legend('Original Signal','Denoised Signal','Location','NorthWest');

Specify the Number of Intervals

Create a signal sampled at 1 kHz. The signal consists of a series of
bumps of various widths.

t = [0.1 0.13 0.15 0.23 0.25 0.40 0.44 0.65 0.76 0.78 0.81];
h = [4 -5 3 -4 5 -4.2 2.1 4.3 -3.1 5.1 -4.2];
h = abs(h);
len = 1000;
w = 0.01*[0.5 0.5 0.6 1 1 3 1 1 0.5 0.8 0.5];
tt = linspace(0,1,len); x = zeros(1,len);
for j=1:11

x = x + ( h(j) ./ (1+ ((tt-t(j))/w(j)).^4));
end
plot(tt,x); title('Original Signal');

Add white Gaussian noise with different variances to two disjoint
segments of the signal. Add zero-mean white Gaussian noise with
variance equal to 2 to the signal segment from 0 to 0.3 seconds. Add
zero-mean white Gaussian noise with unit variance to the signal
segment from 0.3 seconds to 1 second. Set the random number
generator to the default settings for reproducible results.

rng default;
nv1 = sqrt(2).*randn(size(tt)).*(tt<=0.3);
nv2 = randn(size(tt)).*(tt>0.3);
xx = x+nv1+nv2;

Apply interval-dependent denoising using the Daubechies’
least-asymmetric wavelet with 5 vanishing moments down to level 3.
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Set the number of intervals to 2. Plot the noisy signal, original signal,
and denoised signal for comparison.

sigden = cmddenoise(xx,'sym5',3,'s',2);
subplot(211)
plot(tt,xx); title('Noisy Signal');
subplot(212)
plot(tt,x,'k-.','linewidth',2);
hold on;
plot(tt,sigden,'r','linewidth',2);
legend('Original Signal','Denoised Signal','Location','SouthEast');
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Specify Intervals and Thresholds

Load the example signal nbumpr1.mat. The variance of the additive
noise differs in three disjoint intervals.

load nbumpr1.mat;

Use a level-5 multiresolution analysis. Create a cell array of length 5
consisting of 3-by-3 matrices. The first two elements of each row contain
the beginning and ending indices of the interval and the last element of
each row is the corresponding threshold.

thrParamsIn = {...
[...
1 207 1.0482; ...
207 613 2.5110; ...
613 1024 1.0031; ...
]; ...
[...
1 207 1.04824; ...
207 613 3.8718; ...
613 1024 1.04824; ...
]; ...
[...
1 207 1.04824; ...
207 613 1.99710; ...
613 1024 1.65613; ...
]; ...
[...
1 207 1.04824; ...
207 613 2.09117; ...
613 1024 1.04824; ...
]; ...
[...
1 207 1.04824; ...
207 613 1.78620; ...
613 102 1.04824; ...
]; ...
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};

Denoise the signal using the threshold settings and the Daubechies’
least-asymmetric wavelet with 4 vanishing moments. Use a soft
thresholding rule. Plot the noisy and denoised signals for comparison.

wname = 'sym4';
level = 5;
sorh = 's';
sigden = cmddenoise(nbumpr1,wname,level,sorh,NaN,thrParamsIn);
plot(nbumpr1); hold on;
plot(sigden,'r','linewidth',2); axis tight;
legend('Noisy Signal','Denoised Signal','Location','NorthEast');
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Return Denoised Wavelet Coefficients

Load the example signal nblocr1.mat. Use the Haar wavelet and
decompose the signal down to level 2. Obtain the discrete wavelet
transform and denoise the signal. Return the wavelet coefficients of the
noisy and denoised signals.

load nblocr1.mat;
[sigden,coefs] = cmddenoise(nblocr1,'db1',2);
[C,L] = wavedec(nblocr1,2,'db1');

Plot reconstructions based on the level-2 approximation and level-2 and
level-1 detail coefficients for the noisy signal.

1-53



cmddenoise

app = wrcoef('a',C,L,'db1',2);
subplot(3,1,1);
plot(app); title('Approximation Coefficients');
for nn = 1:2

det = wrcoef('d',C,L,'db1',nn);
subplot(3,1,nn+1)
plot(det); title(['Noisy Wavelet Coefficients - Level ' num2str(nn)])

end

Plot reconstructions based on the approximation and detail coefficients
for the denoised signal at the same levels.
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figure;
app = wrcoef('a',coefs,L,'db1',2);
subplot(3,1,1);
plot(app); title('Approximation Coefficients');
for nn = 1:2

det = wrcoef('d',coefs,L,'db1',nn);
subplot(3,1,nn+1)
plot(det);
title(['Thresholded Wavelet Coefficients - Level ' num2str(nn)]);

end
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The approximation coefficients are identical in the noisy and denoised
signal, but most of the detail coefficients in the denoised signal are
close to zero.

Output Intervals and Thresholds

Create a signal sampled at 1 kHz. The signal consists of a series of
bumps of various widths.

t = [0.1 0.13 0.15 0.23 0.25 0.40 0.44 0.65 0.76 0.78 0.81];
h = [4 -5 3 -4 5 -4.2 2.1 4.3 -3.1 5.1 -4.2];
h = abs(h);
len = 1000;
w = 0.01*[0.5 0.5 0.6 1 1 3 1 1 0.5 0.8 0.5];
tt = linspace(0,1,len); x = zeros(1,len);
for j=1:11

x = x + ( h(j) ./ (1+ ((tt-t(j))/w(j)).^4));
end
plot(tt,x); title('Original Signal');

Add white Gaussian noise with different variances to two disjoint
segments of the signal. Add zero-mean white Gaussian noise with
variance equal to 2 to the signal segment from 0 to 0.3 seconds. Add
zero-mean white Gaussian noise with unit variance to the signal
segment from 0.3 seconds to 1 second. Set the random number
generator to the default settings for reproducible results.

rng default;
nv1 = sqrt(2).*randn(size(tt)).*(tt<=0.3);
nv2 = randn(size(tt)).*(tt>0.3);
xx = x+nv1+nv2;

Apply interval-dependent denoising using the Daubechies’
least-asymmetric wavelet with 4 vanishing moments down to level 5.
Automatically choose the number of intervals and output the result.

[sigden,coefs,thrParamsOut] = cmddenoise(xx,'sym4',5);
thrParamsOut{1}
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cmddenoise identifies one variance change point in the 1st level detail
coefficients defining two intervals. The first interval contains samples 1
to 293. The second interval contains samples 293 to 1000. This is close
to the true variance change point, which occurs at sample 299.

Partition Signal into Increasing Numbers of Intervals with
Thresholds

Load the example signal, nbumpr1.mat. Partition the signal into 1 to 6
intervals assuming 0 to 5 change points. Compute the thresholds for
each interval. Using the Daubechies’ least-asymmetric wavelet with 4
vanishing moments return the intervals and corresponding thresholds.
Display the results in the command window.

load nbumpr1.mat;
[sigden,~,~,int_DepThr_Cell] = cmddenoise(nbumpr1,'sym4',1);
format bank;
disp(' Begin End Threshold ');
cellfun(@disp,int_DepThr_Cell,'UniformOutput',false);
format;

Detect Number of Change Points

Load the example signal, nbumpr1.mat. The signal has two variance
change points, which results in three intervals.

Use cmddenoise to detect the number of change points. Print the result.

load nbumpr1.mat;
[sigden,~,thrParamsOut,~,bestNbofInt] = cmddenoise(nbumpr1,'sym4',1);
fprintf('Found %d change points.\n',bestNbofInt-1);

References
[1] Donoho, D. and Johnstone, I. “Ideal spatial adaptation by wavelet
shrinkage”, Biometrika, 1994, 81,3, 425–455.
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[2] Lavielle, M. “Detection of multiple changes in a sequence of
dependent variables”, Stochastic Processes and their Applications, 1999,
83, 79–102.

See Also thselect | wavedec | wthresh | wvarchg
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Purpose Complex Morlet wavelet

Syntax [PSI,X] = cmorwavf(LB,UB,N,FB,FC)

Description [PSI,X] = cmorwavf(LB,UB,N,FB,FC) returns values of the complex
Morlet wavelet defined by a positive bandwidth parameter FB, a wavelet
center frequency FC, and the expression

PSI(X) = ((pi*FB)^(-0.5))*exp(2*i*pi*FC*X)*exp(-X^2/FB)

on an N point regular grid for the interval [LB,UB].

Output arguments are the wavelet function PSI computed on the grid X.

Examples % Set bandwidth and center frequency parameters.
fb = 1.5; fc = 1;

% Set effective support and grid parameters.
lb = -8; ub = 8; n = 1000;

% Compute complex Morlet wavelet cmor1.5-1.
[psi,x] = cmorwavf(lb,ub,n,fb,fc);

% Plot complex Morlet wavelet.
subplot(211)
plot(x,real(psi)),
title('Complex Morlet wavelet cmor1.5-1')
xlabel('Real part'), grid
subplot(212)
plot(x,imag(psi))
xlabel('Imaginary part'), grid
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References Teolis, A. (1998), Computational signal processing with wavelets,
Birkhauser, p. 65.

See Also waveinfo
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Purpose Coiflet wavelet filter

Syntax F = coifwavf(W)

Description F = coifwavf(W) returns the scaling filter associated with the Coiflet
wavelet specified by the string W where W = 'coifN'. Possible values
for N are 1, 2, 3, 4, or 5.

Examples % Set coiflet wavelet name.
wname = 'coif2';

% Compute the corresponding scaling filter.
f = coifwavf(wname)

f =
Columns 1 through 7
0.0116 -0.0293 -0.0476 0.2730 0.5747 0.2949 -0.0541

Columns 8 through 12
-0.0420 0.0167 0.0040 -0.0013 -0.0005

See Also waveinfo
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Purpose Cone of influence

Syntax cone = conofinf(wname,scales,LenSig,COIval)
[cone,PL,PR] = conofinf(wname,scales,LenSig,COIval)
[cone,PL,PR,PLmin,PRmax] = conofinf(wname,scales,LenSig,

COIval)
[PLmin,PRmax] = conofinf(wname,scales,LenSig)
[...] = conofinf(...,'plot')

Description cone = conofinf(wname,scales,LenSig,COIval) returns the cone
of influence (COI) for the wavelet wname at the scales in scales
and positions in COIval. LenSig represents the length of the input
signal. If COIval is a scalar, cone is a matrix with row dimension
length(scales) and column dimension LenSig. If COIval is a vector,
cone is a cell array of matrices. COIval can be a value outside of the
interval [1, LenSig].

[cone,PL,PR] = conofinf(wname,scales,LenSig,COIval) returns
the equations of the left and right boundaries of the cone of influence for
the points in COIval. PL and PR are length(COIval)-by-2 matrices.
The first column contains the slope and the second column contains
the scale-axis intercept of the lines defining the left and right COI
boundaries. The left and right boundaries of the COI at a given scale,
Scal, are(Scal-PL(:,2))./PL(:,1) and (Scal-PR(:,2))./PR(:,1).

[cone,PL,PR,PLmin,PRmax] = conofinf(wname,scales,LenSig,
COIval) returns the equations of the lines that define the minimal
left and maximal right boundaries of the cone of influence. PLmin and
PRmax are 1-by-2 row vectors where PLmin(1) and PRmax(1) are the
slopes of the lines. PLmin(2) and PRmax(2) are the points where the
lines intercept the scale axis at the maximum scale value in scales.

[PLmin,PRmax] = conofinf(wname,scales,LenSig) returns the
slope and intercept terms for the first-degree polynomials defining the
minimal left and maximal right vertices of the cone of influence.

[...] = conofinf(...,'plot') plots the cone of influence.
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Input
Arguments

wname

wname is a string corresponding to a valid wavelet. To verify that wname
is a valid wavelet, wavemngr('fields',wname) must return a struct
array with a type field of 1 or 2, or a nonempty bound field.

scales

scales is a vector of scales over which to compute the cone of influence.
Larger scales correspond to stretched versions of the wavelet and larger
boundary values for the cone of influence.

LenSig

LenSig is the signal length.

COIval

COIval is a vector of values at which to compute the cone of influence.
If COIval is empty, conofinf returns the slope and intercept terms for
the minimal left and maximal right vertices of the cone of influence.
COIval can be a value outside of the interval [1, LenSig].

Output
Arguments

cone

cone is the cone of influence. If COIval is a scalar value, cone is a
matrix. The row dimension equals the number of scales and the
column dimension equals the signal length, LenSig. If COIval is a
vector, cone is a cell array of matrices. The elements of each row of the
matrix are equal to 1 in the interval around COIval corresponding to
the cone of influence.

PL

PL contains the slope and intercept terms of the left (minimal) edge of
the cone of influence. If COIval is a scalar, PL is a 1-by-2 row vector.
If COIval is a vector, PL is a two-column matrix with row dimension
equal to the length of COIval.

PR
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PR contains the slope and intercept terms of the right (maximal) edge of
the cone of influence. If COIval is a scalar, PR is a 1-by-2 row vector.
If COIval is a vector, PR is a two-column matrix with row dimension
equal to the length of COIval.

PLmin

PLmin is a 1-by-2 row vector containing the slope and scale axis
intercept of the line defining the minimal left vertex of the cone of
influence. PLmin(1) indicates the slope and PLmin(2) indicates the
point where the line intercepts the scale axis at the maximum scale
value.

PRmax

PRmax is a 1-by-2 row vector containing the slope and scale axis
intercept of the line defining the maximal right vertex of the cone of
influence. PRmax(1) indicates the slope and PRmax(2) indicates the
point where the line intercepts the scale axis at the maximum scale
value.

Definitions Cone of Influence

Let ψ(t) be an admissible wavelet. Assume that the effective support of
ψ(t) is [-B,B]. Letting u denote the translation parameter and s denote
the scale parameter, you obtain the dilated and translated wavelet
as follows:

 u s
t u

s
t

s
, ( ) ( )= −1

The translated and dilated wavelet has effective support [u-sB,u+sB].
The cone of influence (COI) is the set of all t included in the effective
support of the wavelet at a given position and scale. This set equals

| |t u sB− ≤

1-64



conofinf

At each scale, the COI determines the set of wavelet coefficients
influenced by the value of the signal at a specified position.

Examples Cone of influence for Mexican hat wavelet.

load cuspamax
signal = cuspamax;
wname = 'mexh';
scales = 1:64;
lenSIG = length(signal);
COIval = 500;
figure;
cwt(signal,scales,wname,'plot');
hold on
[cone,PL,PR,Pmin,Pmax] = conofinf(wname,scales,lenSIG,COIval,'plot');

Left minimal and right maximal vertices for the cone of influence
(Morlet wavelet).

[PLmin,PRmax] = conofinf('morl',1:32,1024,[],'plot');
% PLmin = -0.1245*u+ 32.0000
% PRmax = 0.1250*u-96.0000

References Mallat, S. A Wavelet Tour of Signal Processing, London: Academic
Press, 1999, p. 174.

See Also cwt | wavsupport

Tutorials • “Continuous Wavelet Transform”

• “Interpreting CWT Coefficients”

How To • “1-D Continuous Wavelet Analysis”
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Purpose Continuous 1-D wavelet transform

Syntax coefs = cwt(x,scales,'wname')
coefs = cwt(x,scales,'wname','plot')
coefs = cwt(x,scales,'wname','coloration')
[coefs,sgram] = cwt(x,scales,'wname','scal')
[coefs,sgram] = cwt(x,scales,'wname','scalCNT')
coefs = cwt(x,scales,'wname','coloration',xlim)

Description coefs = cwt(x,scales,'wname') computes the continuous wavelet
coefficients of the signal vector x at real, positive scales, using wavelet
'wname' (see waveinfo for more information). x is real and the wavelet
can be real or complex. coefs is an la-by-lx matrix, where la is the
length of scales and lx is the length of the input x. coefs is a real or
complex matrix, depending on the wavelet type.

coefs = cwt(x,scales,'wname','plot') plots the continuous
wavelet transform coefficients, using default coloration 'absglb'.

coefs = cwt(x,scales,'wname','coloration') uses the specified
coloration.

[coefs,sgram] = cwt(x,scales,'wname','scal') displays a scaled
image of the scalogram.

[coefs,sgram] = cwt(x,scales,'wname','scalCNT') displays a
contour representation of the scalogram.

coefs = cwt(x,scales,'wname','coloration',xlim) colors the
coefficients using coloration and xlim, where xlim is a vector, [x1 x2],
with 1 ≤ x1 < x2 ≤ length(x).

Definitions Scale values

Scale values determine the degree to which the wavelet is compressed
or stretched. Low scale values compress the wavelet and correlate
better with high frequencies. The low scale CWT coefficients represent
the fine-scale features in the input signal vector. High scale values
stretch the wavelet and correlate better with the low frequency content
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of the signal. The high scale CWT coefficients represent the coarse-scale
features in the input signal.

Coloration

Coloration is the method used to scale the coefficient values for plotting.
Each coefficient is divided by the resulting coloration value.

• 'lvl' — uses maximum value in each scale

• 'glb' — uses maximum value in all scales

• 'abslvl' or 'lvlabs'— uses maximum absolute value in each scale

• 'absglb' or 'glbabs'— uses maximum absolute value in all scales

• 'scal'— produces a scaled image of the scalogram

• 'scalCNT'— produces a contour representation of the scalogram

For 3-D plots (surfaces), use the coloration parameter preceded
by '3D', such as coefs = cwt(...,'3Dplot') or coefs =
cwt(...,'3Dlvl') ...

Scalogram

Scalograms are plots that represent the percentage energy for each
coefficient.

Examples Plot the continuous wavelet transform and scalogram using sym2
wavelet at all integer scales from 1 to 32, using a fractal signal as input:

load vonkoch
vonkoch=vonkoch(1:510);
len = length(vonkoch);
cw1 = cwt(vonkoch,1:32,'sym2','plot');
title('Continuous Transform, absolute coefficients.')
ylabel('Scale')
[cw1,sc] = cwt(vonkoch,1:32,'sym2','scal');
title('Scalogram')
ylabel('Scale')
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Compare discrete and continuous wavelet transforms, using a fractal
signal as input:

load vonkoch
vonkoch=vonkoch(1:510);
len=length(vonkoch);
[c,l]=wavedec(vonkoch,5,'sym2');
% Compute and reshape DWT to compare with CWT.
cfd=zeros(5,len);
for k=1:5

d=detcoef(c,l,k);
d=d(ones(1,2^k),:);
cfd(k,:)=wkeep(d(:)',len);

end
cfd=cfd(:);
I=find(abs(cfd) <sqrt(eps));
cfd(I)=zeros(size(I));
cfd=reshape(cfd,5,len);
% Plot DWT.
subplot(311); plot(vonkoch); title('Analyzed signal.');
set(gca,'xlim',[0 510]);
subplot(312);
image(flipud(wcodemat(cfd,255,'row')));
colormap(pink(255));
set(gca,'yticklabel',[]);
title('Discrete Transform,absolute coefficients');
ylabel('Level');
% Compute CWT and compare with DWT
subplot(313);
ccfs=cwt(vonkoch,1:32,'sym2','plot');
title('Continuous Transform, absolute coefficients');
set(gca,'yticklabel',[]);
ylabel('Scale');
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References Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society for
Industrial and Applied Mathematics (SIAM), 1992.

Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA:
Academic Press, 1998.

How To “Continuous Wavelet Transform”

“1-D Continuous Wavelet Analysis”

“New Wavelet for CWT”

See Also cwtext | dwt | wavedec | wavefun | waveinfo | wcodemat
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Purpose Continuous wavelet transform using FFT algorithm

Syntax cwtstruct = cwtft(sig)
cwtstruct = cwtft(sig,Name,Value)
cwtstruct = cwtft(...,'plot')

Description cwtstruct = cwtft(sig) returns the continuous wavelet transform
(CWT) of the 1–D input signal sig. cwtft uses an FFT algorithm to
compute the CWT. sig can be a vector, a structure array, or a cell
array. If the sampling interval of your signal is not equal to 1, you
must input the sampling period with sig in a cell array or a structure
array to obtain correct results. If sig is a cell array, sig{1} is equal
to your signal and sig{2} is equal to the sampling interval. If sig is a
structure array, the field sig.val contains your signal and sig.period
contains the sampling interval.

By default, cwtft uses the analytic Morlet wavelet. See “Wavelet
Definitions” on page 1-73 for a description of valid analyzing wavelets.

For additional default values, see scales in “Name-Value Pair
Arguments” on page 1-71.

cwtstruct = cwtft(sig,Name,Value) returns the continuous
wavelet transform (CWT) of the 1–D input signal sig with additional
options specified by one or more Name,Value pair arguments. See
“Name-Value Pair Arguments” on page 1-71 for a comprehensive list.

cwtstruct = cwtft(...,'plot') plots the continuous wavelet
transform. If the analyzing wavelet is real-valued, the original signal
along with the CWT coefficient magnitudes and signed CWT coefficients
are plotted. If the analyzing wavelet is complex-valued, the original
signal is plotted along with the moduli, real parts, imaginary parts, and
angles of the CWT coefficients. You can select the radio button in the
bottom left of the plot to superimpose the signal’s reconstruction using
icwtft.
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Input
Arguments

sig

The 1–D input signal. sig can be a vector, a structure array, or a cell
array. If sig is a structure array, sig contains two fields: val and
period. sig.val is the signal vector and sig.period is the sampling
period. If sig is a cell array, sig{1} is the signal vector and sig{2} is
the sampling period.

If sig is a vector, the sampling period defaults to 1.

Note If the sampling interval of your input signal is not 1, you must
input the sampling interval with sig in a cell array or structure array
to obtain correct results. If sig is a cell array, sig{1} is the 1–D
input signal and sig{2} is the sampling period. If sig is a structure
array, the field sig.val is the 1–D input signal and sig.period is
the sampling interval.

Name-Value Pair Arguments

’scales’

Scales over which to compute the CWT. The value of scales can be a
vector, a structure array, or a cell array. If scales is a structure array,
it contains at most five fields. The first three fields are mandatory.
The last two fields are optional.

1 s0— The smallest scale. The default s0 depends on the wavelet. See
“Wavelet Definitions” on page 1-73 for the wavelet-dependent default.

2 ds— Spacing between scales. The default ds depends on the wavelet.
See “Wavelet Definitions” on page 1-73 for the wavelet-dependent
default. You can construct a linear or logarithmic scale vector using
ds. See type for a description of the type of spacing.

3 nb— Number of scales. The default nb depends on the wavelet. See
“Wavelet Definitions” on page 1-73 for the wavelet-dependent default.
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4 type — Type of spacing between scales. type can be one of 'pow'
or 'lin'. The default is 'pow'. If type is equal to 'pow', the CWT
scales are s0*pow.^((0:nb-1)*ds). This results in a constant
spacing of ds if you take the logarithm to the base power of the scales
vector. If type is equal to 'lin', the CWT scales are linearly spaced
by s0 + (0:nb-1)*ds.

Use the default power of two spacing to ensure an accurate
approximation to the original signal based only on select scales.
See the second example in “Examples” on page 1-75 for a signal
approximation based on select scales.

5 pow — The base for 'pow' spacing. The default is 2. This input is
valid only if the type argument is 'pow'.

If scales is a cell array, the first three elements of the cell array are
identical to the first three elements of the structure array described in
the preceding list. The last two elements of the cell array are optional
and match the two optional inputs in the structure array described
in the preceding list.

’wavelet’

Analyzing wavelet. The supported analyzing wavelets are:

• 'dog'— m-th order derivative of a Gaussian wavelet where m is a
positive even integer. The default value of m is 2.

• 'morl' — Morlet wavelet. Results in an analytic Morlet wavelet.
The Fourier transform of an analytic wavelet is zero for negative
frequencies.

• 'morlex' — non-analytic Morlet wavelet

• 'morl0'— non-analytic Morlet wavelet with zero mean

• 'mexh'—Mexican hat wavelet. The Mexican hat wavelet is a special
case of the m-th order derivative of a Gaussian wavelet with m=2.

• 'paul' — Paul wavelet
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See “Wavelet Definitions” on page 1-73 for formal definitions of the
supported analyzing wavelets and associated defaults.

Default: 'morl'

Output
Arguments

cwtstruct

A structure array with six fields. The fields of the structure array are:

• dt — The sampling interval of the 1–D input signal

• cfs — The CWT coefficient matrix. cwtstruct.cfs is an nb-by-N
matrix where nb is the number of scales and N is the length of the
input signal.

• meanSIG — Mean of the analyzed signal

• omega — Vector of angular frequencies

• scales — Vector of scales at which the CWT is computed. The
length of cwtstruct.scales is equal to the row dimension of
cwtstruct.cfs.

• wav — Analyzing wavelet

Definitions Wavelet Definitions
Morlet Wavelet
Both non-analytic and analytic Morlet wavelets are supported. The
analytic Morlet wavelet, 'morl', is defined in the Fourier domain by:

ˆ ( ) ( )/ ( ) / s e U ss     1 4 20
2

where U(ω) is the Heaviside step function [5].

The non-analytic Morlet wavelet, 'morlex', is defined in the Fourier
domain by:

ˆ ( ) / ( ) / s e s     1 4 20
2
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'morl0' defines a non-analytic Morlet wavelet in the Fourier domain
with exact zero mean:

ˆ ( ) { }/ ( ) / / s e es      1 4 2 20
2

0
2

The default value of ω0 is 6.

The scale-to-frequency Fourier factor for the Morlet wavelet is:

4

20 0
2



 

s

 

The default smallest scale for the Morlet wavelets is 2*dt where dt is
the sampling period.

The default spacing between scales for the Morlet wavelets is
ds=0.4875.

The default number of scales for the Morlet wavelets is
fix(log2(length(sig))/ds)+1.

m-th Order Derivative of Gaussian Wavelets
In the Fourier domain, the m-th order derivative of Gaussian wavelets,
'dog', are defined by:

ˆ ( )
( / )

( ) ( ) /


s
m

js em s   


1

1 2

2 2

where Г( ) denotes the gamma function [5].

The derivative must be an even order. The default order of the
derivative is 2, which is also known as the Mexican hat wavelet .

The scale-to-frequency Fourier factor for the DOG wavelet is:

2
1
2

 s

m 
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The default smallest scale for the DOG wavelet is 2*dt where dt is
the sampling period.

The default spacing between scales for the DOG wavelet is ds=0.4875.

The default number of scales for the DOG wavelet is
max([fix(log2(length(sig))/ds),1]).

Paul Wavelet
The Fourier transform of the analytic Paul wavelet, 'paul', of order
m is:

ˆ ( ) ( )! ( ) ( ) s m m s e U swm m s    2 2 1

where U(ω) is the Heaviside step function [5].

The default order of the Paul wavelet is 4.

The scale-to-frequency Fourier factor for the Paul wavelet is:

4
2 1

 s
m 

The default smallest scale for the Paul wavelet is 2*dt where dt is
the sampling period.

The default spacing between scales for the Paul wavelet is ds=0.4875.

The default number of scales for the Paul wavelet is
fix(log2(length(sig))/ds)+1.

Examples Compute and display the CWT of sine waves with disjoint support.
The sampling interval is 1/1023.

N = 1024;
% Sampling interval is 1/1023
t = linspace(0,1,N);
y = sin(2*pi*4*t).*(t<=0.5)+sin(2*pi*8*t).*(t>0.5);
% Because the sampling interval differs from the default
% you must input it along with the signal
% Using cell array input
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sig = {y,1/1023};
cwtS1 = cwtft(sig,'plot');

You can display or hide the reconstructed signal using the radio button
at the bottom left of the figure. When you select the radio button, the
maximum and quadratic relative errors are computed and displayed
along with the reconstructed signal.

Reconstruct an approximation to a sum of disjoint sine waves in noise
using cwtft to decompose the signal and icwtft to reconstruct the
approximation. Use the CWT coefficients to identify the scales isolating
the sinusoidal components. Reconstruct an approximation to the signal
based on those scales using the inverse CWT. To ensure an accurate
approximation to the based on select scales, use the default power of
two spacing in the CWT.

rng default % Reset random number generator for reproducible results
N = 1024;
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% Sampling interval is 1/1023
t = linspace(0,1,N);
y = sin(2*pi*4*t).*(t<=0.5)+sin(2*pi*8*t).*(t>0.5);
ynoise = y+randn(size(t));
% Because the sampling interval differs from the default
% you must input it along with the signal
% Using structure array input
sig = struct('val',ynoise,'period',1/1023);
cwtS1 = cwtft(sig);
scales = cwtS1.scales;
MorletFourierFactor = 4*pi/(6+sqrt(2+6^2));
freq = 1./(scales.*MorletFourierFactor);
contour(t,freq,real(cwtS1.cfs));
xlabel('Seconds'); ylabel('Pseudo-frequency');
axis([0 t(end) 0 15]);
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Extract the scales dominated by energy from the two sine waves and
reconstruct a signal approximation using the inverse CWT.

cwtS2 = cwtS1;
cwtS2.cfs = zeros(size(cwtS1.cfs));
cwtS2.cfs(13:15,:) = cwtS1.cfs(13:15,:);
xrec = icwtft(cwtS2);
subplot(2,1,1);
plot(t,ynoise);
title('Sum of Disjoint Sinusoids in Noise');
subplot(2,1,2);
plot(t,xrec,'b'); hold on; axis([0 1 -4 4]);
plot(t,y,'r');
legend('Reconstructed Signal','Original Signal',...
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'Location','NorthWest');
xlabel('Seconds'); ylabel('Amplitude');

Algorithms cwtft implements the following algorithm:

• Obtain the discrete Fourier transform (DFT) of the signal using fft.

• Obtain the DFT of the analyzing wavelet at the appropriate angular
frequencies. Scale the DFT of the analyzing wavelet at different
scales to ensure different scales are directly comparable.

• Take the product of the signal DFT and the wavelet DFT over all the
scales. Invert the DFT to obtain the CWT coefficients.
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For a mathematical motivation for the FFT-based algorithm see
“DFT-Based Continuous Wavelet Transform”.

References [1] Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society
for Industrial and Applied Mathematics (SIAM), 1992.

[2] Farge, M. “Wavelet Transforms and Their Application to
Turbulence”, Ann. Rev. Fluid. Mech., 1992, 24, 395–457.

[3] Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA:
Academic Press, 1998.

[4] Sun,W. “Convergence of Morlet’s Reconstruction Formula”, preprint,
2010.

[5] Torrence, C. and G.P. Compo. “A Practical Guide to Wavelet
Analysis”, Bull. Am. Meteorol. Soc., 79, 61–78, 1998.

Alternatives • cwt — Computes the CWT using convolutions. cwt supports a
wider choice of analyzing wavelets than cwtft, but may be more
computationally expensive. The output of cwt is not compatible with
the inverse CWT implemented with icwtft. To use icwtft, obtain
the CWT with cwtft.

See Also cwt | icwtft

How To • “Continuous Wavelet Transform”

• “DFT-Based Continuous Wavelet Transform”

• “Inverse Continuous Wavelet Transform”
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Purpose Valid analyzing wavelets for FFT-based CWT

Syntax cwtftinfo

Description cwtftinfo displays expressions for the Fourier transforms of valid
analyzing wavelets for use with cwtft.

Definitions Wavelet Definitions
Morlet Wavelet
Both non-analytic and analytic Morlet wavelets are supported. The
analytic Morlet wavelet, 'morl', is defined in the Fourier domain by:

ˆ ( ) ( )/ ( ) / s e U ss     1 4 20
2

where U(ω) is the Heaviside step function.

The non-analytic Morlet wavelet, 'morlex', is defined in the Fourier
domain by:

ˆ ( ) / ( ) / s e s     1 4 20
2

'morl0' defines a non-analytic Morlet wavelet in the Fourier domain
with exact zero mean:

ˆ ( ) { }/ ( ) / / s e es      1 4 2 20
2

0
2

The default value of ω0 is 6.

The scale-to-frequency Fourier factor for the Morlet wavelet is:

4

20 0
2



 

s

 

m-th Order Derivative of Gaussian Wavelets
In the Fourier domain, the m-th order derivative of Gaussian wavelets,
'dog', is defined by:
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ˆ ( )
( / )

( ) ( ) /

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

1

1 2

2 2

The derivative must be an even order. The default order of the
derivative is 2, which is also known as the Mexican hat wavelet.

Because the unit imaginary, j, is always raised to an even power, the
Fourier transform is real-valued.

The scale-to-frequency Fourier factor for the DOG wavelet is:

2
1
2

 s

m 

Paul Wavelet
The Fourier transform of the Paul wavelet, 'paul', of order m is:

ˆ ( ) ( )! ( ) ( ) s m m s e U swm m s    2 2 1

where U(ω) is the Heaviside step function. The Paul wavelet is analytic.

The scale-to-frequency Fourier factor for the Paul wavelet is:

4
2 1

 s
m 

The default order of the Paul wavelet is 4.

Examples Display a list of Fourier transforms for all valid analyzing wavelets.

cwtftinfo

References [1] Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society
for Industrial and Applied Mathematics (SIAM), 1992.

[2] Farge, M. Wavelet Transforms and Their Application to Turbulence,
Ann. Rev. Fluid. Mech., 1992, 24, 395–457.
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[3] Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA:
Academic Press, 1998.

[4] Torrence, C. and G.P. Compo A Practical Guide to Wavelet Analysis,
Bull. Am. Meteorol. Soc., 79, 61–78, 1998.

See Also cwtft | icwtft

How To • “Continuous Wavelet Transform”

• “DFT-Based Continuous Wavelet Transform”

• “Inverse Continuous Wavelet Transform”
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Purpose Supported 2-D CWT wavelets and Fourier transforms

Syntax cwtftinfo2
cwtftinfo2(wname)

Description cwtftinfo2 lists the supported 2-D continuous wavelet transform
(CWT) wavelets and corresponding parameters for use with cwtft2.

cwtftinfo2(wname) displays the equation for the 2-D Fourier transform
of the wavelet, wname. The figure with the 2-D Fourier transform of
the analyzing wavelet has a drop-down list from which you can select
other wavelets.

Input
Arguments

wname - Wavelet name
string

Wavelet name, specified as a string. The following table lists the
supported wavelets for the 2-D CWT and associated parameters:

Wavelet name Parameters

'morl' {'Omega0',6;'Sigma',1;'Epsilon',1}

'mexh' {'p',2;'sigmax',1;'sigmay',1}

'paul' {'p',4}

'dog' {'alpha',1.25}

'cauchy' {'alpha','pi/6';'L',4;'M',4;'sigma',1}

'escauchy' {'alpha','pi/6';'L',4;'M',4;'sigma',1}

'gaus' {'p',1;'sigmax',1;'sigmay',1}

'wheel' {'sigma',2}

'fan' {'Omega0X',5.336;'Sigma',1;'Epsilon',1;'J'

'pethat' None

'dogpow' {'alpha',1.25;'p',2}
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Wavelet name Parameters

'esmorl' {'Omega0',6;'Sigma',1;'Epsilon',1}

'esmexh' {'Sigma',1;'Epsilon',0.5}

'gaus2' {'p',1;'sigmax',1;'sigmay',1}

'gaus3' {'A',1;'B',1;'p',1;'sigmax',1;'sigmay',

'isodog' {'alpha',1.25,1.25}

'dog2' {'alpha',1.25,1.25}

'isomorl' {'Omega0',6;'Sigma',1}

'rmorl' {'Omega0',6;'Sigma',1;'Epsilon',1}

'endstop1' {'Omega0',6}

'endstop2' {'Omega0',6;'Sigma',1}

'gabmexh' {'Omega0',5.336;'Epsilon',1}

'sinc' {'Ax',1;'Ay',1;'p',1;'Omega0X',0;'Omega

Example: cwtftinfo2('paul')

Data Types
char

Examples Available Wavelets with Parameters

cwtftinfo2

Display the Expression for the 2-D Fourier Transform

Display the expression for the 2-D Fourier transform of the Cauchy
wavelet.

cwtftinfo2('cauchy')
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After displaying the Fourier transform for any wavelet, you can use the
drop-down list in the bottom left to view the Fourier transform for any
supported wavelet.

See Also cwtft2
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Purpose 2-D continuous wavelet transform

Syntax cwtstruct = cwtft2(x)
cwtstruct = cwtft2(x,'plot')
cwtstruct = cwtft2(x,Name,Value)

Description cwtstruct = cwtft2(x) returns the 2-D continuous wavelet transform
(CWT) of the 2-D matrix, x. cwtft2 uses a Fourier transform-based
algorithm in which the 2-D Fourier transforms of the input data and
analyzing wavelet are multiplied together and inverted.

cwtstruct = cwtft2(x,'plot') plots the data and the 2-D CWT.

cwtstruct = cwtft2(x,Name,Value) uses additional options specified
by one or more Name,Value pair arguments.

Input
Arguments

x - Input data
array

Input data, specified as a 2-D matrix or 3-D array. If the input data is a
3-D array, the input matrix is a truecolor image.

Example: X = imread('stars.jpg');

Data Types
double | uint8

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'wavelet','paul','scales',2^(0:5) specifies to use the
Paul wavelet and a vector of scales.
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’angles’ - Angles
0 (default) | scalar | vector

Angles in radians, specified as a comma-separated pair consisting of
'angles' and either a scalar or a vector.

Example: 'angles',[0 pi/2 pi]

’norm’ - Normalization
'L2' (default) | 'L1' | 'L0'

Normalization used in the 2-D CWT, specified as a comma-separated
pair consisting of 'norm' and one of these strings:

• 'L2' — The Fourier transform of the analyzing wavelet at a given
scale is multiplied by the corresponding scale. 'L2' is the default
normalization.

• 'L1'— The Fourier transform of the analyzing wavelet is multiplied
by 1 at all scales.

• 'L0' — The Fourier transform of the analyzing wavelet at a given
scale is multiplied by the square of the corresponding scale.

Example: 'norm','L1'

’scales’ - Scales
2^(0:5) (default) | scalar | vector

Scales, specified as a comma-separated pair consisting of 'scales' and
either a positive real-valued scalar or a vector of positive real numbers.

Example: 'scales',2^(1:6)

’wavelet’ - Analyzing wavelet
'morl' (default) | string | structure | cell array

Analyzing wavelet, specified as a comma-separated pair consisting
of 'wavelet' and a string, a structure, or a cell array. cwtftinfo2
provides a comprehensive list of supported wavelets and associated
parameters.
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If you specify 'wavelet' as a structure, the structure must contain
two fields:

• name— the string corresponding to a supported wavelet.

• param— a cell array with the parameters of the wavelet.

If you specify 'wavelet' as a cell array, wav, the cell array must contain
two elements:

• wav{1}— the string corresponding to a supported wavelet.

• wav{2}— a cell array with the parameters of the wavelet.

Example: 'wavelet',{'morl',{6,1,1}}

Example: 'wavelet',struct('name','paul','param',{'p',2})

Output
Arguments

cwtstruct - 2-D CWT
structure

The 2-D CWT, returned as a structure with the following fields:

wav - Analyzing wavelet and parameters
structure

Analyzing wavelet and parameters, returned as a structure with the
following fields:

• wname — name

• param — parameters

wav_norm - Normalization constants
matrix

Normalization constants, returned as a M-by-N matrix where M is the
number of scales and N is the number of angles.

cfs - CWT coefficients
array
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CWT coefficients, returned as an N-D array. The row and column
dimensions of the array equal the row and column dimensions of the
input data. The third page of the array is equal to 1 or 3 depending on
whether the input data is a grayscale or truecolor image. The fourth
page of the array is equal to the number of scales and the fifth page of
the array is equal to the number of angles.

scales - Scales
vector

Scales for the 2-D CWT, returned as a row vector.

angles - Angles
vector

Angles for the 2-D CWT, returned as a row vector.

meanSIG - Mean
scalar

Mean of the input data, returned as a scalar

Examples Compare Isotropic and Anisotropic Wavelets

This example shows how an isotropic wavelet does not discern the
orientation of features while an anisotropic wavelet does. The example
uses the Mexican hat isotropic wavelet and the directional (anisotropic)
Cauchy wavelet.

Load and view the hexagon image.

Im = imread('hexagon.jpg');
imagesc(Im); colormap(jet);

Obtain the scale-one 2-D CWT with both the Mexican hat and Cauchy
wavelets. Specify a vector of angles going from 0 to 15π/8 in π/8
increments.

cwtcauchy = cwtft2(Im,'wavelet','cauchy','scales',1,...
'angles',0:pi/8:2*pi-pi/8);
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cwtmexh = cwtft2(Im,'wavelet','mexh','scales',1,...
'angles',0:pi/8:2*pi-pi/8);

Visualize the scale-one 2-D CWT coefficient magnitudes at each angle.

angz = {'0', 'pi/8', 'pi/4', '3pi/8', 'pi/2', '5pi/8', '3pi/4', ...
'7pi/8','pi', '9pi/8', '5pi/4', '11pi/8', '3pi/2', ...
'13pi/8' '7pi/4', '15pi/8'};

for angn = 1:length(angz)
subplot(211)
imagesc(abs(cwtmexh.cfs(:,:,1,1,angn)));
title(['Mexican hat at ' angz(angn) 'radians']);
subplot(212)
imagesc(abs(cwtcauchy.cfs(:,:,1,1,angn)));
title(['Cauchy wavelet at ' angz(angn) 'radians']);
pause(1);

end

Plot 2-D CWT

Load an image of a woman, obtain the 2-D CWT using the Morlet
wavelet, and plot the CWT coefficients.

load woman;
cwtmorl = cwtft2(X,'scales',1:4,'angles',0:pi/2:3*pi/2,'plot');

2-D CWT with Morlet Wavelet

Obtain the 2-D CWT of the star image using the default Morlet wavelet,
scales 2^(0:5), and an angle of 0.

Im = imread('star.jpg');
cwtout = cwtft2(Im);

See Also cwtftinfo2

Related
Examples

• “Two-Dimensional CWT of Noisy Pattern”
• “2-D Continuous Wavelet Transform App”
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Purpose Real or complex continuous 1-D wavelet coefficients using extension
parameters

Syntax COEFS = cwtext(S,SCALES,'wname')
COEFS = cwtext(S,SCALES,'wname',PropName1,ProVal1, ...)
EXTMODE = struct('Mode',ModeVAL,'Side',SideVAL,'Len',LenVAL);
EXTMODE = {ModeVAL,SideVAL,LenVAL};
COEFS = cwtext(...,'PlotMode',PLOTMODE)

Description COEFS = cwtext(S,SCALES,'wname') computes the continuous wavelet
coefficients of the vector S at real, positive SCALES, using a wavelet
named 'wname'. The signal S is real; the wavelet can be real or complex.

COEFS = cwtext(S,SCALES,'wname',PropName1,ProVal1, ...)
computes and plots the continuous wavelet transform coefficients using
extra parameters. Valid values for PropName are:

• 'ExtMode'

• 'ExtSide'

• 'ExtLen'

• 'PlotMode'

• 'xlim'

The continuous wavelet transform coefficients are computed using the
extension parameters:

• 'ExtMode'

• 'ExtSide'

• 'ExtLen'

Valid values for ExtMode are:

• ’zpd’ (zero padding)

• ’sp0’ (smooth extension of order 0)

• ’sp1’ (smooth extension of order 1)
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etc.

Valid values for ExtSide are:

• ExtSide = 'l' (or 'u') for left (or up) extension

• ExtSide = 'r' (or 'd') for right (or down) extension

• ExtSide = 'b' for extension on both sides

• ExtSide = 'n' null extension

For the complete list of valid values for ExtMode and ExtSide, see
wextend.

ExtLen is the length of extension.

Default values for extension parameters are 'zpd' and 'b'. ExtLen is
computed using the maximum of SCALES.

Instead of three parameters, use the following syntaxes:

EXTMODE =
struct('Mode',ModeVAL,'Side',SideVAL,'Len',LenVAL);

EXTMODE = {ModeVAL,SideVAL,LenVAL};

COEFS = cwtext(...,'PlotMode',PLOTMODE) computes and plots the
continuous wavelet transform coefficients. Coefficients are colored
using PLOTMODE:

• PLOTMODE = 'lvl' (By scale)

• PLOTMODE = 'glb' (All scales)

• PLOTMODE = 'abslvl' or 'lvlabs' (Absolute value and By scale)

• PLOTMODE = 'absglb' or 'glbabs' (Absolute value and All scales)

You get 3-D plots (surfaces) using the same keywords listed above
for the PLOTMODE parameter, preceded by '3D', for example,
PLOTMODE = '3Dlvl'.
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When PLOTMODE = 'scal' or 'scalCNT' the continuous wavelet
transform coefficients and the corresponding scalogram (percentage of
energy for each coefficient) are computed.

When PLOTMODE is 'scal', a scaled image of scalogram is displayed.
When PLOTMODE is 'scalCNT', a contour representation of scalogram
is displayed.

If the XLIM parameter is given, the continuous wavelet transform
coefficients are colored using PLOTMODE and XLIM.

XLIM = [x1 x2] with 1 <= x1 < x2 <= length(S).

For each given scale a within the vector SCALES, the wavelet coefficients
C(a,b) are computed for b = 1 to ls = length(S), and are stored in
COEFS(i,:) if a = SCALES(i).

Output argument COEFS is a la-by-ls matrix where la is the length of
SCALES. COEFS is a real or complex matrix depending on the wavelet
type.

Examples of valid use are as follows:

t = linspace(-1,1,512);
s = 1-abs(t);
c = cwtext(s,1:32,'cgau4');
c = cwtext(s,[64 32 16:-2:2],'morl');
c = cwtext(s,[3 18 12.9 7 1.5],'db2');
c = cwtext(s,1:32,'sym2','plotMode','lvl');
c = cwtext(s,1:64,'sym4','plotMode','abslvl','xlim',[100 400]);

[c,Sc] = cwtext(s,1:64,'sym4','plotMode','scal');
[c,Sc] = cwtext(s,1:64,'sym4','plotMode','scalCNT');
[c,Sc] = cwtext(s,1:64,'sym4','plotMode','scalCNT', ...

'extMode','sp1');

c = cwtext(s,1:64,'sym4','plotMode','lvl','extMode','sp0');
c = cwtext(s,1:64,'sym4','plotMode','lvl','extMode','sp1');
c = cwtext(s,1:64,'sym4','plotMode','lvl', ...

'extMode',{'sp1','b',300});
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ext = struct('Mode','sp1','Side','b','Len',300);
c = cwtext(s,1:64,'sym4','plotMode','lvl','extMode',ext);

Examples This example demonstrates the difference between a continuous wavelet
transform which deals with signal extension and one which does not.

% Load and plot the signal
load wcantor
plot(wcantor)

% Compute and plot the coefficients
cwt(wcantor,(1:256),'mexh','absglb');
colormap(pink(4))
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In this figure above, which is produced by the cwt function, the values
of coefficients are tremendously affected by the boundary effect due to
the discontinuity of the signal on the right. The default (zero-padding)
extension mode on the right explains this important discontinuity
because the last value is 1. On the left there is no effect because the
first value is 0.

% Compute and plot the coefficients with adapted extension mode
figure;
cwtext(wcantor,(1:256),'mexh','extmode','sp0','extLen',2000, ...

'plotMode','absglb');
colormap(pink(4))
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In this figure, produced by the cwtext function, the suitable extension
mode of the signal is very efficient, giving as it can be seen, a good result.

See Also cwt | wavedec | wavefun | waveinfo | wcodemat
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Purpose Daubechies wavelet filter computation

Syntax W = dbaux(N,SUMW)
W = dbaux(N)
W = dbaux(N,0)

Description W = dbaux(N,SUMW) is the order N Daubechies scaling filter such that
sum(W) = SUMW. Possible values for N are 1, 2, 3, ...

Note Instability may occur when N is too large.

W = dbaux(N) is equivalent to W = dbaux(N,1)

W = dbaux(N,0) is equivalent to W = dbaux(N,1)

Examples % P the "Lagrange trous" filter for N=2 is explicit
% and given by:
P = [ -1/16 0 9/16 1 9/16 0 -1/16]

P =
-0.0625 0 0.5625 1.0000 0.5625 0 -0.0625

% The db2 Daubechies scaling filter w, is a
% solution of the equation: P = conv(wrev(w),w) * 2.
%
% This filter P is symmetric, easy to generate, and w is
% a minimum phase solution of the previous equation,
% based on the roots of P.
rP = roots(P);

% Retaining only the root inside the unit circle (here it
% is the sixth value of rP), and two roots located at -1,
% we obtain the Daubechies wavelet of order 2:
ww = poly([rP(6) -1 -1]); % filter construction
ww = ww / sum(ww) % normalize sum
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ww =
0.3415 0.5915 0.1585 -0.0915

% Check that ww is correct and equal to
% the db2 Daubechies scaling filter w.
w = dbaux(2)

w =
0.3415 0.5915 0.1585 -0.0915

Algorithms The algorithm used is based on a result obtained by Shensa (see
“References”), showing a correspondence between the “Lagrange à
trous” filters and the convolutional squares of the Daubechies wavelet
filters.

The computation of the order N Daubechies scaling filter w proceeds in
two steps: compute a “Lagrange à trous” filter P, and extract a square
root. More precisely:

• P the associated “Lagrange à trous” filter is a symmetric filter of
length 4N-1. P is defined by

P = [a(N) 0 a(N-1) 0 ... 0 a(1) 1 a(1) 0 a(2) 0 ... 0 a(N)]

• where

• Then, if w denotes dbN Daubechies scaling filter of sum , w is
a square root of P:

P = conv(wrev(w),w) where w is a filter of length 2N.
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The corresponding polynomial has N zeros located at −1 and N−1
zeros less than 1 in modulus.

Note that other methods can be used; see various solutions of the
spectral factorization problem in Strang-Nguyen (p. 157).

Limitations The computation of the dbN Daubechies scaling filter requires the
extraction of the roots of a polynomial of order 4N. Instability may occur
when N is too large.

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference
series in applied mathematics, SIAM Ed.

Shensa, M.J. (1992), “The discrete wavelet transform: wedding the a
trous and Mallat Algorithms,” IEEE Trans. on Signal Processing, vol.
40, 10, pp. 2464-2482.

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks,
Wellesley-Cambridge Press.

See Also dbwavf | wfilters
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Purpose Daubechies wavelet filter

Syntax F = dbwavf(W)

Description F = dbwavf(W) returns the scaling filter associated with Daubechies
wavelet specified by the string W where W = 'dbN'. Possible values for
N are 1, 2, 3, ..., 45.

Examples % Set Daubechies wavelet name.
wname = 'db4';

% Compute the corresponding scaling filter.
f = dbwavf(wname)

f =
Columns 1 through 7
0.1629 0.5055 0.4461 -0.0198 -0.1323 0.0218 0.0233
Column 8
-0.0075

See Also dbaux | waveinfo | wfilters
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Purpose Default values for denoising or compression

Syntax [THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,IN2,X)
[THR,SORH,KEEPAPP] = ddencmp(IN1,'wv',X)
[THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,'wp',X)

Description ddencmp returns default values for denoising or compression for the
critically-sampled discrete wavelet or wavelet packet transform.

You can use ddencmp for 1-D signals or 2-D images.

[THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,IN2,X) returns default
values for denoising or compression, using wavelets or wavelet packets,
of an input vector or matrix X, which can be a one- or two-dimensional
signal. THR is the threshold, SORH is for soft or hard thresholding,
KEEPAPP allows you to keep approximation coefficients, and CRIT (used
only for wavelet packets) is the entropy name (see wentropy for more
information).

IN1 is 'den' for denoising or 'cmp' for compression.

IN2 is 'wv' for wavelet or 'wp' for wavelet packet.

For wavelets (three output arguments):

[THR,SORH,KEEPAPP] = ddencmp(IN1,'wv',X) returns default values
for denoising (if IN1 = 'den') or compression (if IN1 = 'cmp') of X.
These values can be used for wdencmp.

For wavelet packets (four output arguments):

[THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,'wp',X) returns default
values for denoising (if IN1 = 'den') or compression (if IN1 = 'cmp')
of X. These values can be used for wdencmp.

Examples Default Global Threshold for Wavelet Denoising

Determine the default global denoising threshold for an N(0,1) white
noise input.
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Create an N(0,1) white noise input. Set the random number generator
to the default initial settings for reproducible results.

dwtmode('per');
rng default;
x = randn(512,1);

Use ddencmp to obtain the default global threshold for wavelet
denoising. Demonstrate that the threshold is equal to the universal
threshold of Donoho and Johnstone scaled by a robust estimate of the
variance.

[thr,sorh,keepapp] = ddencmp('den','wv',x);
[A,D] = dwt(x,'db1');
noiselev = median(abs(D))/0.6745;
thresh = sqrt(2*log(length(x)))*noiselev;

Compare the value of the variable thr to the value of thresh.

Default Global Threshold for Wavelet Packet Compression

Determine the default global compression threshold for an N(0,1) white
noise input.

Create an N(0,1) white noise input. Set the random number generator
to the default initial settings for reproducible results.

dwtmode('per');
rng default;
x = randn(512,1);

Use ddencmp with the 'cmp' and 'wp' input arguments to return the
default global compression threshold for a wavelet packet transform.

[thr,sorh,keepapp,crit] = ddencmp('den','wp',x) ;

References Donoho, D.L. (1995), “De-noising by soft-thresholding,” IEEE, Trans. on
Inf. Theory, 41, 3, pp. 613–627.
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Donoho, D.L.; I.M. Johnstone (1994), “Ideal spatial adaptation by
wavelet shrinkage,” Biometrika, vol 81, pp. 425–455.

Donoho, D.L.; I.M. Johnstone (1994), “Ideal de-noising in an
orthonormal basis chosen from a library of bases,” C.R.A.S. Paris, Ser.
I, t. 319, pp. 1317–1322.

See Also wdencmp | wenergy | wpdencmp
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Purpose Dual-tree and double-density 1-D wavelet transform

Syntax wt = dddtree(typetree,x,level,fdf,df)
wt = dddtree(typetree,x,level,fname)
wt = dddtree(typetree,x,level,fname1,fname2)

Description wt = dddtree(typetree,x,level,fdf,df) returns the typetree
discrete wavelet transform (DWT) of the 1-D input signal, x, down to
level, level. The wavelet transform uses the decomposition (analysis)
filters, fdf, for the first level and the analysis filters, df, for subsequent
levels. Supported wavelet transforms are the critically sampled
DWT, double-density, dual-tree complex, and dual-tree double-density
complex wavelet transform. The critically sampled DWT is a filter bank
decomposition in an orthogonal or biorthogonal basis (nonredundant).
The other wavelet transforms are oversampled filter banks.

wt = dddtree(typetree,x,level,fname) uses the filters specified
by fname to obtain the wavelet transform. Valid filter specifications
depend on the type of wavelet transform. See dtfilters for details.

wt = dddtree(typetree,x,level,fname1,fname2) uses the filters
specified in fname1 for the first stage of the dual-tree wavelet transform
and the filters specified in fname2 for subsequent stages of the dual-tree
wavelet transform. Specifying different filters for stage 1 is valid and
necessary only when typetree is 'cplxdt' or 'cplxdddt'.

Input
Arguments

typetree - Type of wavelet decomposition
'dwt' | 'ddt' | 'cplxdt' | 'cplxdddt'

Type of wavelet decomposition, specified as one of 'dwt', 'ddt',
'cplxdt', or 'cplxdddt'. The type, 'dwt', gives a critically sampled
(nonredundant) discrete wavelet transform. The other decomposition
types produce oversampled wavelet transforms. 'ddt' produces a
double-density wavelet transform. 'cplxdt' produces a dual-tree
complex wavelet transform. 'cplxdddt' produces a double-density
dual-tree complex wavelet transform.
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x - Input signal
vector

Input signal, specified as an even-length row or column vector. If L is
the value of the level of the wavelet decomposition, 2L must divide the
length of x. Additionally, the length of the signal must be greater than
or equal to the product of the maximum length of the decomposition
(analysis) filters and 2(L-1).

Data Types
double

level - Level of wavelet decomposition
positive integer

Level of the wavelet decomposition, specified as an integer. If L is
the value of level, 2L must divide the length of x . Additionally, the
length of the signal must be greater than or equal to the product of the
maximum length of the decomposition (analysis) filters and 2(L-1).

Data Types
double

fdf - Level-one analysis filters
matrix | cell array

The level-one analysis filters, specified as a matrix or cell array of
matrices. Specify fdf as a matrix when typetree is 'dwt' or 'ddt'.
The size and structure of the matrix depend on the typetree input
as follows:

• 'dwt'— This is the critically sampled discrete wavelet transform.
In this case, fdf is a two-column matrix with the lowpass (scaling)
filter in the first column and the highpass (wavelet) filter in the
second column.

• 'ddt' — This is the double-density wavelet transform. The
double-density DWT is a three-channel perfect reconstruction filter
bank. fdf is a three-column matrix with the lowpass (scaling) filter
in the first column and the two highpass (wavelet) filters in the
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second and third columns. In the double-density wavelet transform,
the single lowpass and two highpass filters constitute a three-channel
perfect reconstruction filter bank. This is equivalent to the three
filters forming a tight frame. You cannot arbitrarily choose the two
wavelet filters in the double-density DWT. The three filters together
must form a tight frame.

Specify fdf as a 1-by-2 cell array of matrices when typetree is a
dual-tree transform, 'cplxdt' or 'cplxdddt'. The size and structure of
the matrix elements depend on the typetree input as follows:

• For the dual-tree complex wavelet transform, 'cplxdt', fdf{1}
is a two-column matrix containing the lowpass (scaling) filter and
highpass (wavelet) filters for the first tree. The scaling filter is the
first column and the wavelet filter is the second column. fdf{2} is
a two-column matrix containing the lowpass (scaling) and highpass
(wavelet) filters for the second tree. The scaling filter is the first
column and the wavelet filter is the second column.

• For the double-density dual-tree complex wavelet transform,
'cplxdddt', fdf{1} is a three-column matrix containing the lowpass
(scaling) and two highpass (wavelet) filters for the first tree and
fdf{2} is a three-column matrix containing the lowpass (scaling) and
two highpass (wavelet) filters for the second tree.

Data Types
double

df - Analysis filters for levels > 1
matrix | cell array

Analysis filters for levels > 1, specified as a matrix or cell array of
matrices. Specify df as a matrix when typetree is 'dwt' or 'ddt'.
The size and structure of the matrix depend on the typetree input
as follows:

• 'dwt'— This is the critically sampled discrete wavelet transform. In
this case, df is a two-column matrix with the lowpass (scaling) filter
in the first column and the highpass (wavelet) filter in the second
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column. For the critically sampled orthogonal or biorthogonal DWT,
the filters in df and fdf must be identical.

• 'ddt' — This is the double-density wavelet transform. The
double-density DWT is a three-channel perfect reconstruction filter
bank. df is a three-column matrix with the lowpass (scaling) filter
in the first column and the two highpass (wavelet) filters in the
second and third columns. In the double-density wavelet transform,
the single lowpass and two highpass filters must constitute a
three-channel perfect reconstruction filter bank. This is equivalent to
the three filters forming a tight frame. For the double-density DWT,
the filters in df and fdf must be identical.

Specify df as a 1-by-2 cell array of matrices when typetree is
a dual-tree transform, 'cplxdt' or 'cplxdddt'. For dual-tree
transforms, the filters in fdf and df must be different. The size
and structure of the matrix elements in the cell array depend on the
typetree input as follows:

• For the dual-tree complex wavelet transform, 'cplxdt', df{1} is a
two-column matrix containing the lowpass (scaling) and highpass
(wavelet) filters for the first tree. The scaling filter is the first column
and the wavelet filter is the second column. df{2} is a two-column
matrix containing the lowpass (scaling) and highpass (wavelet) filters
for the second tree. The scaling filter is the first column and the
wavelet filter is the second column.

• For the double-density dual-tree complex wavelet transform,
'cplxdddt', df{1} is a three-column matrix containing the lowpass
(scaling) and two highpass (wavelet) filters for the first tree and
df{2} is a three-column matrix containing the lowpass (scaling) and
two highpass (wavelet) filters for the second tree.

Data Types
double

fname - Filter name
string
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Filter name, specified as a string. For the critically sampled DWT,
specify any valid orthogonal or biorthogonal wavelet filter. See
wfilters for details. For the double-density wavelet transform, 'ddt',
valid choices are 'filters1' and 'filters2'. For the complex
dual-tree wavelet transform, valid choices are 'dtfP' with P = 1, 2,
3, 4. For the double-density dual-tree wavelet transform, the only
valid choice is 'dddtf1'. See dtfilters for more details on valid filter
strings for the oversampled wavelet filter banks.

Data Types
char

fname1 - First-stage filter name
string

First-stage filter name, specified as a string. Specifying a different
filter for the first stage is valid and necessary only in the dual-tree
transforms, 'cplxdt' and 'cplxddt'. In the complex dual-tree wavelet
transform, you can use any valid wavelet filter for the first stage. In the
double-density dual-tree wavelet transform, the first-stage filters must
form a three-channel perfect reconstruction filter bank.

Data Types
char

fname2 - Filter name for stages > 1
string

Filter name for stages > 1, specified as a string. You must specify a
first-level filter that is different from the wavelet and scaling filters
in subsequent levels when using the dual-tree wavelet transforms,
'cplxdt' or 'cplxdddt'. See dtfilters for valid choices.

Data Types
char

Output
Arguments

wt - Wavelet transform
structure

Wavelet transform, returned as a structure with these fields:
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type - Type of wavelet decomposition (filter bank)
'dwt' | 'ddt' | 'cplxdt' | 'cplxdddt'

Type of wavelet decomposition (filter bank) used in the analysis,
returned as one of 'dwt', 'ddt', 'cplxdt', or 'cplxdddt'. The type,
'dwt', gives a critically sampled discrete wavelet transform. The
other types correspond to oversampled wavelet transforms. 'ddt' is a
double-density wavelet transform, 'cplxdt' is a dual-tree complex
wavelet transform, and 'cplxdddt' is a double-density dual-tree
complex wavelet transform.

level - Level of the wavelet decomposition
positive integer

Level of wavelet decomposition, returned as a positive integer.

filters - Decomposition (analysis) and reconstruction (synthesis)
filters
structure

Decomposition (analysis) and reconstruction (synthesis) filters,
returned as a structure with these fields:

Fdf - First-stage analysis filters
matrix | cell array

First-stage analysis filters, returned as an N-by-2 or N-by-3 matrix for
single-tree wavelet transforms, or a cell array of two N-by-2 or N-by-3
matrices for dual-tree wavelet transforms. The matrices are N-by-3
for the double-density wavelet transforms. For an N-by-2 matrix, the
first column of the matrix is the scaling (lowpass) filter and the second
column is the wavelet (highpass) filter. For an N-by-3 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second and
third columns are the wavelet (highpass) filters. For the dual-tree
transforms, each element of the cell array contains the first-stage
analysis filters for the corresponding tree.

Df - Analysis filters for levels > 1
matrix | cell array
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Analysis filters for levels > 1, returned as an N-by-2 or N-by-3 matrix for
single-tree wavelet transforms, or a cell array of two N-by-2 or N-by-3
matrices for dual-tree wavelet transforms. The matrices are N-by-3
for the double-density wavelet transforms. For an N-by-2 matrix, the
first column of the matrix is the scaling (lowpass) filter and the second
column is the wavelet (highpass) filter. For an N-by-3 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second and
third columns are the wavelet (highpass) filters. For the dual-tree
transforms, each element of the cell array contains the analysis filters
for the corresponding tree.

Frf - First-level reconstruction filters
matrix | cell array

First-level reconstruction filters, returned as an N-by-2 or N-by-3
matrix for single-tree wavelet transforms, or a cell array of two N-by-2
or N-by-3 matrices for dual-tree wavelet transforms. The matrices
are N-by-3 for the double-density wavelet transforms. For an N-by-2
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second column is the wavelet (highpass) filter. For an N-by-3
matrix, the first column of the matrix is the scaling (lowpass) filter and
the second and third columns are the wavelet (highpass) filters. For
the dual-tree transforms, each element of the cell array contains the
first-stage synthesis filters for the corresponding tree.

Rf - Reconstruction filters for levels > 1
matrix | cell array

Reconstruction filters for levels > 1, returned as an N-by-2 or N-by-3
matrix for single-tree wavelet transforms, or a cell array of two N-by-2
or N-by-3 matrices for dual-tree wavelet transforms. The matrices
are N-by-3 for the double-density wavelet transforms. For an N-by-2
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second column is the wavelet (highpass) filter. For an N-by-3
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second and third columns are the wavelet (highpass) filters.
For the dual-tree transforms, each element of the cell array contains
the synthesis filters for the corresponding tree.
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cfs - Wavelet transform coefficients
cell array of matrices

Wavelet transform coefficients, returned as a 1-by-(level+1) cell array
of matrices. The size and structure of the matrix elements of the cell
array depend on the type of wavelet transform, typetree, as follows:

• 'dwt' — cfs{j}

- j = 1,2,..., level is the level.

- cfs{level+1} are the lowpass, or scaling, coefficients.

• 'ddt' — cfs{j}(:,:,k)

- j = 1,2,..., level is the level.

- k = 1,2 is the wavelet filter.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdt' — cfs{j}(:,:,m)

- j = 1,2,..., level is the level.

- m = 1,2 are the real and imaginary parts.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdddt' — cfs{j}(:,:,k,m)

- j = 1,2,..., level is the level.

- k = 1,2 is the wavelet filter.

- m = 1,2 are the real and imaginary parts.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

Examples Complex Dual-Tree Wavelet Transform

Obtain the complex dual-tree wavelet transform of the noisy Doppler
signal. The FIR filters in the first and subsequent stages result in an
approximately analytic wavelet as required.

Create the first-stage analysis filters for the two trees.
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Faf{1} = [0 0
-0.0884 -0.0112
0.0884 0.0112
0.6959 0.0884
0.6959 0.0884
0.0884 -0.6959

-0.0884 0.6959
0.0112 -0.0884
0.0112 -0.0884

0 0];
Faf{2} = [ 0.0112 0

0.0112 0
-0.0884 -0.0884
0.0884 -0.0884
0.6959 0.6959
0.6959 -0.6959
0.0884 0.0884

-0.0884 0.0884
0 0.0112
0 -0.0112];

Create the analysis filters for subsequent stages of the multiresolution
analysis.

af{1} = [ 0.0352 0
0 0

-0.0883 -0.1143
0.2339 0
0.7603 0.5875
0.5875 -0.7603

0 0.2339
-0.1143 0.0883

0 0
0 -0.0352];

af{2} = [0 -0.0352
0 0
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-0.1143 0.0883
0 0.2339

0.5875 -0.7603
0.7603 0.5875
0.2339 0

-0.0883 -0.1143
0 0

0.0352 0];

Load the noisy Doppler signal and obtain the complex dual-tree wavelet
transform down to level 4.

load noisdopp;
wt = dddtree('cplxdt',noisdopp,4,Faf,af);

Plot an approximation based on the level-four approximation
coefficients.

xapp = dddtreecfs('r',wt,'scale',{5});
plot(noisdopp); hold on;
plot(cell2mat(xapp),'r','linewidth',3);
axis tight;
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Double-Density Wavelet Transform

Obtain the double-density wavelet transform of a signal with two
discontinuities. Use the level-one detail coefficients to localize the
discontinuities.

Create a signal consisting of a 2-Hz sine wave with a duration of 1
second. The sine wave has discontinuities at 0.3 and 0.72 seconds.

N = 1024;
t = linspace(0,1,1024);
x = 4*sin(4*pi*t);
x = x - sign(t - .3) - sign(.72 - t);
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plot(t,x); xlabel('t'); ylabel('x');
title('Original Signal');

Obtain the double-density wavelet transform of the signal, reconstruct
an approximation based on the level-one detail coefficients, and plot
the result.

wt = dddtree('ddt',x,1,'filters1');
wt.cfs{2} = zeros(1,512);
xrec = idddtree(wt);
plot(t,xrec,'linewidth',2)
set(gca,'xtick',[0 0.3 0.72 1]); set(gca,'xgrid','on');
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First-Level Detail Coefficients Approximation — Complex
Dual-Tree

Obtain the complex dual-tree wavelet transform of a signal with two
discontinuities. Use the first-level detail coefficients to localize the
discontinuities.

Create a signal consisting of a 2-Hz sine wave with a duration of 1
second. The sine wave has discontinuities at 0.3 and 0.72 seconds.

N = 1024;
t = linspace(0,1,1024);
x = 4*sin(4*pi*t);
x = x - sign(t - .3) - sign(.72 - t);
plot(t,x); xlabel('t'); ylabel('x');
title('Original Signal');

Obtain the dual-tree wavelet transform of the signal, reconstruct an
approximation based on the level-one detail coefficients, and plot the
result.

wt = dddtree('cplxdt',x,1,'FSfarras','qshift06');
wt.cfs{2} = zeros(1,512,2);
xrec = idddtree(wt);
plot(t,xrec,'linewidth',2)
set(gca,'xtick',[0 0.3 0.72 1]); set(gca,'xgrid','on');

See Also dddtree2 | dddtreecfs | dtfilters | idddtree

Related
Examples

• “Analytic Wavelets Using the Dual-Tree Wavelet Transform”

Concepts • “Critically Sampled and Oversampled Wavelet Filter Banks”
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Purpose Extract dual-tree/double-density wavelet coefficients or projections

Syntax out = dddtreecfs(outputtype,wt,outputspec,outputindices)
out = dddtreecfs(outputtype,wt,outputspec,outputindices,

'plot')

Description out = dddtreecfs(outputtype,wt,outputspec,outputindices)
extracts the coefficients or subspace projections from the 1-D or 2-D
wavelet decomposition, wt. If outputtype equals 'e', out contains
wavelet or scaling coefficients. If outputtype equals 'r', out contains
wavelet or scaling subspace projections (reconstructions).

out = dddtreecfs(outputtype,wt,outputspec,outputindices,
'plot') plots the signal or image reconstruction or specified analysis
coefficients. You can include the 'plot' option anywhere after the
wt input.

Input
Arguments

outputtype - Output type
'e' | 'r'

Output type, specified as 'e' or 'r'. Use 'e' to obtain the scaling or
wavelet coefficients. Use 'r' to obtain a projection, or reconstruction,
onto the appropriate scaling or wavelet subspace.

wt - Wavelet transform
structure

Wavelet transform, specified as a structure. The structure array is the
output of dddtree or dddtree2.

outputspec - Output specification
'lowpass' | 'scale' | 'ind' | 'cumind'

Output specification, specified as one of 'lowpass', 'scale', 'ind', or
'cumind'. The output specifications are defined as follows:

• 'lowpass' — Outputs the lowpass, or scaling, coefficients or
a signal/image approximation based on the scaling coefficients.
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If you set the output specification to 'lowpass', do not specify
outputindices. If the outputtype is 'e', out is a structure array
with fields identical to the input structure array wt except that all
wavelet (detail) coefficients are equal to zero. If the outputtype is
'r', out is a signal or image approximation based on the scaling
coefficients. The signal or image approximation is equal in size to the
original input to dddtree or dddtree2.

• 'scale'— Outputs the coefficients or a signal/image approximation
based on the scales specified in outputindices. If the outputtype
is 'e', out is a cell array of structure arrays. The fields of the
structure arrays in out are identical to the fields of the input
structure array wt. The coefficients in the cfs field are all equal
to zero except the coefficients corresponding to the scales in
outputindices. If the outputtype is 'r', out is a signal or
image approximation based on the scales in outputindices. The
signal or image approximation is equal in size to the original input
to dddtree or dddtree2.

• 'ind' — Outputs the coefficients or a signal/image approximation
based on the tree-position indices specified in outputindices. If
the outputtype is 'e', out is a cell array of vectors or matrices
containing the coefficients specified by the tree-position indices in
outputindices. If the outputtype is 'r', out is a cell array of
vectors or matrices containing signal or image approximations based
on the corresponding tree-position indices in outputindices.

• 'cumind'—Outputs the coefficients or a signal/image approximation
based on the tree-position indices specified in outputindices. If
the outputtype is 'e', out is a structure array. The fields of the
structure array are identical to the fields of the input structure array
wt. The coefficients in the cfs field are all equal to zero except the
coefficients corresponding to the tree positions in outputindices.
If the outputtype is 'r', out is a signal or image approximation
based on the coefficients corresponding to the tree-position indices
in outputindices.

Example: 'ind',{[1 1]; [1 2]}
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outputindices - Output indices
cell array

Output indices, specified as a cell array with scalar or vector
elements. If outputspec equals 'scale', a scalar element selects the
corresponding element in the cfs field of wt. If outputspec equals
'ind' or 'cumind', the elements of outputspec are row vectors. The
first element of the row vector corresponds to the element in the cfs
field of wt. Subsequent elements in the row vector correspond to the
indices of the array contained in the cell array element.

Example: 'scale',{1;2;3}

Output
Arguments

out - Signal or image reconstruction or coefficients
cell array | structure | vector | matrix

Signal or image reconstruction or coefficients, returned as a vector,
matrix, structure array, cell array of vectors or matrices, or cell array of
structure arrays. The form of out depends on the value of outputspec
and outputindices.

Examples Reconstruction from 1-D Complex Dual-Tree Wavelet
Transform

Obtain the complex dual-tree wavelet transform of the 1-D noisy
Doppler signal. Reconstruct an approximation based on the level-three
detail coefficients

Load the noisy Doppler signal. Obtain the complex dual-tree transform
down to level 3.

load noisdopp;
wt = dddtree('cplxdt',noisdopp,3,'dtf1');

Plot a reconstruction of the original signal based on the level-three
detail coefficients

xr = dddtreecfs('r',wt,'scale',{3},'plot');
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Coefficients from 1-D Complex Dual-Tree Wavelet Transform

Load the noisy Doppler signal. Obtain the complex dual-tree transform
down to level 3.

load noisdopp;
wt = dddtree('cplxdt',noisdopp,3,'dtf1');

Create a cell array of vectors to obtain the second- and third-level detail
coefficients from each of the wavelet filter bank trees.

outputindices = {[2 1]; [2 2]; [3 1]; [3 2]};

The first element of each vector in the cell array denotes the level, or
stage. The second element denotes the tree.

Extract the detail coefficients.

out = dddtreecfs('e',wt,'ind',outputindices);

out is a 1-by-4 cell array. The cell array elements contain the wavelet
coefficients corresponding to the elements in outputindices. For
example, out{1} contains the level-two detail coefficients from the first
tree.

1-D Complex Dual-Tree Wavelet Transform Structure

Load the noisy Doppler signal. Obtain the complex dual-tree transform
down to level 3.

load noisdopp;
wt = dddtree('cplxdt',noisdopp,3,'dtf1');

Create a cell array of vectors to obtain the second- and third-level detail
coefficients from each of the wavelet filter bank trees.

outputindices = {[2 1]; [2 2]; [3 1];[3 2]};

The first element of each vector in the cell array denotes the level, or
stage. The second element denotes the tree.
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Create a structure array identical to the wt output of dddtree with all
the coefficients equal to zero except the first- and second-level detail
coefficients.

out = dddtreecfs('e',wt,'cumind',outputindices);

Extract Diagonal Features from Image

Use the complex dual-tree wavelet transform to isolate diagonal
features in an image at +45 and –45 degrees.

Load and display the xbox image.

load xbox;
imagesc(xbox)

Obtain the complex dual-tree wavelet transform down to level 3.

fdf = dtfilters('FSfarras');
df = dtfilters('qshift10');
wt = dddtree2('cplxdt',xbox,3,fdf,df);

Isolate the +45 and -45 diagonal image features in the level-one wavelet
coefficients. Plot the result.

out = dddtreecfs('e',wt,'ind',{[1 3 1 2]; [1 3 2 2]},'plot');

See Also dddtree | dddtree2 | plotdt
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Purpose Dual-tree and double-density 2-D wavelet transform

Syntax wt = dddtree2(typetree,x,level,fdf,df)
wt = dddtree2(typetree,x,level,fname)
wt = dddtree2(typetree,x,level,fname1,fname2)

Description wt = dddtree2(typetree,x,level,fdf,df) returns the typetree
discrete wavelet transform of the 2-D input image, x, down to level,
level. The wavelet transform uses the decomposition (analysis) filters,
fdf, for the first level and the analysis filters, df, for subsequent
levels. Supported wavelet transforms are the critically sampled DWT,
double-density, real oriented dual-tree, complex oriented dual-tree,
real oriented dual-tree double-density, and complex oriented dual-tree
double-density wavelet transform. The critically sampled DWT is
a filter bank decomposition in an orthogonal or biorthogonal basis
(nonredundant). The other wavelet transforms are oversampled filter
banks with differing degrees of directional selectivity.

wt = dddtree2(typetree,x,level,fname) uses the filters specified
by fname to obtain the wavelet transform. Valid filter specifications
depend on the type of wavelet transform. See dtfilters for details.

wt = dddtree2(typetree,x,level,fname1,fname2) uses the filters
specified in fname1 for the first stage of the dual-tree wavelet transform
and the filters specified in fname2 for subsequent stages of the dual-tree
wavelet transform. Specifying different filters for stage 1 is valid and
necessary only when typetree is 'realdt', 'cplxdt', 'realdddt',
or 'cplxdddt'.

Input
Arguments

typetree - Type of wavelet decomposition
'dwt' | 'ddt' | 'realdt' | 'cplxdt' | 'realdddt' | 'cplxdddt'

Type of wavelet decomposition, specified as one of 'dwt', 'ddt',
'realdt', 'cplxdt', 'realdddt', or 'cplxdddt'. The type, 'dwt',
produces a critically sampled (nonredundant) discrete wavelet
transform. The other decomposition types produce oversampled wavelet
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transforms. 'ddt' produces a double-density wavelet transform with
one scaling and two wavelet filters for both row and column filtering.
The double-density wavelet transform uses the same filters at all
stages. 'realdt' and 'cplxdt' produce oriented dual-tree wavelet
transforms consisting of two and four separable wavelet transforms.
'realdddt' and 'cplxdddt' produce double-density dual-tree wavelet
transforms. The dual-tree wavelet transforms use different filters for
the first stage (level).

x - Input image
matrix

Input image, specified as a matrix with even-length row and column
dimensions. Both the row and column dimensions must be divisible
by 2L, where L is the level of the wavelet transform. Additionally,
the minimum of the row and column dimensions of the image must
be greater than or equal to the product of the maximum length of the
decomposition (analysis) filters and 2(L-1).

Data Types
double

level - Level of wavelet decomposition
integer

Level of the wavelet decomposition, specified as a positive integer.
If L is the value of level, 2L must divide both the row and column
dimensions of x. Additionally, the minimum of the row and column
dimensions of the image must be greater than or equal to the product of
the maximum length of the decomposition (analysis) filters and 2(L-1).

fdf - Level-one analysis filters
matrix | cell array

The level-one analysis filters, specified as a matrix or cell array of
matrices. Specify fdf as a matrix when typetree is 'dwt' or 'ddt'.
The size and structure of the matrix depend on the typetree input
as follows:
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• 'dwt'— This is the critically sampled discrete wavelet transform.
In this case, fdf is a two-column matrix with the lowpass (scaling)
filter in the first column and the highpass (wavelet) filter in the
second column.

• 'ddt' — This is the double-density wavelet transform. The
double-density DWT is a three-channel perfect reconstruction filter
bank. fdf is a three-column matrix with the lowpass (scaling) filter
in the first column and the two highpass (wavelet) filters in the
second and third columns. In the double-density wavelet transform,
the single lowpass and two highpass filters constitute a three-channel
perfect reconstruction filter bank. This is equivalent to the three
filters forming a tight frame. You cannot arbitrarily choose the two
wavelet filters in the double-density DWT. The three filters together
must form a tight frame.

Specify fdf as a 1-by-2 cell array of matrices when typetree is a
dual-tree transform, 'realdt', 'cplxdt', 'realdddt', or 'cplxdddt'.
The size and structure of the matrix elements in the cell array depend
on the typetree input as follows:

• For the dual-tree complex wavelet transforms, 'realdt' and
'cplxdt', fdf{1} is an N-by-2 matrix containing the lowpass
(scaling) and highpass (wavelet) filters for the first tree and fdf{2}
is an N-by-2 matrix containing the lowpass (scaling) and highpass
(wavelet) filters for the second tree.

• For the double-density dual-tree complex wavelet transforms,
'realdddt' and 'cplxdddt', fdf{1} is an N-by-3 matrix containing
the lowpass (scaling) and two highpass (wavelet) filters for the first
tree and fdf{2} is an N-by-3 matrix containing the lowpass (scaling)
and two highpass (wavelet) filters for the second tree.

df - Analysis filters for levels > 1
matrix | cell array

Analysis filters for levels > 1, specified as a matrix or cell array of
matrices. Specify df as a matrix when typetree is 'dwt' or 'ddt'.
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The size and structure of the matrix depend on the typetree input
as follows:

• 'dwt'— This is the critically sampled discrete wavelet transform. In
this case, df is a two-column matrix with the lowpass (scaling) filter
in the first column and the highpass (wavelet) filter in the second
column. For the critically sampled orthogonal or biorthogonal DWT,
the filters in df and fdf must be identical.

• 'ddt' — This is the double-density wavelet transform. The
double-density DWT is a three-channel perfect reconstruction filter
bank. df is a three-column matrix with the lowpass (scaling) filter in
the first column and the two highpass (wavelet) filters in the second
and third columns. In the double-density wavelet transform, the
single lowpass and two highpass filters constitute a three-channel
perfect reconstruction filter bank. This is equivalent to the three
filters forming a tight frame. For the double-density DWT, the filters
in df and fdf must be identical.

Specify df as a 1-by-2 cell array of matrices when typetree is a
dual-tree transform, 'realdt', 'cplxdt', 'realdddt', or 'cplxdddt'.
For dual-tree transforms, the filters in fdf and df must be different.
The size and structure of the matrix elements in the cell array depend
on the typetree input as follows:

• For the dual-tree wavelet transforms, 'realdt' and 'cplxdt', df{1}
is an N-by-2 matrix containing the lowpass (scaling) and highpass
(wavelet) filters for the first tree and df{2} is an N-by-2 matrix
containing the lowpass (scaling) and highpass (wavelet) filters for
the second tree.

• For the double-density dual-tree complex wavelet transforms,
'realdddt' and 'cplxdddt', df{1} is an N-by-3 matrix containing
the lowpass (scaling) and two highpass (wavelet) filters for the first
tree and df{2} is an N-by-3 matrix containing the lowpass (scaling)
and two highpass (wavelet) filters for the second tree.

fname - Filter name
string
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Filter name, specified as a string. For the critically sampled DWT,
specify any valid orthogonal or biorthogonal wavelet filter. See
wfilters for details. For the redundant wavelet transforms, see
dtfilters for valid filter names.

fname1 - First-stage filter name
string

First-stage filter name, specified as a string. Specifying a first-level
filter that is different from the wavelet and scaling filters in subsequent
levels is valid and necessary only with the dual-tree wavelet transforms,
'realdt', 'cplxdt', 'realdddt', and 'cplxdddt'.

fname2 - Filter name for stages > 1
string

Filter name for stages > 1, specified as a string. Specifying a different
filter for stages > 1 is valid and necessary only with the dual-tree
wavelet transforms, 'realdt', 'cplxdt', 'realdddt', and 'cplxdddt'.

Output
Arguments

wt - Wavelet transform
structure

Wavelet transform, returned as a structure with these fields:

type - Type of wavelet decomposition (filter bank)
'dwt' | 'ddt' | 'realdt' | 'cplxdt' | 'realdddt' | 'cplxdddt'

Type of wavelet decomposition used in the analysis returned as one of
'dwt', 'ddt', 'realdt', 'cplxdt', 'realdddt', or 'cplxdddt'. 'dwt'
is the critically sampled DWT. 'ddt' produces a double-density wavelet
transform with one scaling and two wavelet filters for both row and
column filtering. 'realdt' and 'cplxdt' produce oriented dual-tree
wavelet transforms consisting of 2 and 4 separable wavelet transforms.
'realdddt' and 'cplxdddt' produce double-density dual-tree wavelet
transforms consisting of two and four separable wavelet transforms.

level - Level of wavelet decomposition
positive integer
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Level of wavelet decomposition, returned as a positive integer.

filters - Decomposition (analysis) and reconstruction (synthesis)
filters
structure

Decomposition (analysis) and reconstruction (synthesis) filters,
returned as a structure with these fields:

Fdf - First-stage analysis filters
matrix | cell array

First-stage analysis filters, returned as an N-by-2 or N-by-3 matrix
for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2
or N-by-3 matrices for dual-tree wavelet transforms. The matrices
are N-by-3 for the double-density wavelet transforms. For an N-by-2
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second column is the wavelet (highpass) filter. For an N-by-3
matrix, the first column of the matrix is the scaling (lowpass) filter and
the second and third columns are the wavelet (highpass) filters. For
the dual-tree transforms, each element of the cell array contains the
first-stage analysis filters for the corresponding tree.

Df - Analysis filters for levels > 1
matrix | cell array

Analysis filters for levels > 1, returned as an N-by-2 or N-by-3 matrix
for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2
or N-by-3 matrices for dual-tree wavelet transforms. The matrices
are N-by-3 for the double-density wavelet transforms. For an N-by-2
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second column is the wavelet (highpass) filter. For an N-by-3
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second and third columns are the wavelet (highpass) filters.
For the dual-tree transforms, each element of the cell array contains
the analysis filters for the corresponding tree.

Frf - First-level reconstruction filters
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matrix | cell array

First-level reconstruction filters, returned as an N-by-2 or N-by-3
matrix for single-tree wavelet transforms, or a 1-by-2 cell array of
two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The
matrices are N-by-3 for the double-density wavelet transforms. For an
N-by-2 matrix, the first column of the matrix is the scaling (lowpass)
filter and the second column is the wavelet (highpass) filter. For an
N-by-3 matrix, the first column of the matrix is the scaling (lowpass)
filter and the second and third columns are the wavelet (highpass)
filters. For the dual-tree transforms, each element of the cell array
contains the first-stage synthesis filters for the corresponding tree.

Rf - Reconstruction filters for levels > 1
matrix | cell array

Reconstruction filters for levels > 1, returned as an N-by-2 or N-by-3
matrix for single-tree wavelet transforms, or a 1-by-2 cell array of
two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The
matrices are N-by-3 for the double-density wavelet transforms. For an
N-by-2 matrix, the first column of the matrix is the scaling (lowpass)
filter and the second column is the wavelet (highpass) filter. For an
N-by-3 matrix, the first column of the matrix is the scaling (lowpass)
filter and the second and third columns are the wavelet (highpass)
filters. For the dual-tree transforms, each element of the cell array
contains the first-stage analysis filters for the corresponding tree.

cfs - Wavelet transform coefficients
cell array of matrices

Wavelet transform coefficients, specified as a 1-by-(level+1) cell array
of matrices. The size and structure of the matrix elements of the cell
array depend on the type of wavelet transform, typetree as follows:

• 'dwt' — cfs{j}(:,:,d)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.
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- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'ddt' — cfs{j}(:,:,d)

- j = 1,2,..., level is the level.

- d = 1,2,3,4,5,6,7,8 is the orientation.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'realddt' — cfs{j}(:,:,d,k)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- k = 1,2 is the wavelet transform tree.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdt' — cfs{j}(:,:,d,k,m)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- k = 1,2 is the wavelet transform tree.

- m = 1,2 are the real and imaginary parts.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'realdddt' — cfs{j}(:,:,d,k)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- k = 1,2 is the wavelet transform tree.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdddt' — cfs{j}(:,:,d,k,m)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- k = 1,2 is the wavelet transform tree.
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- m = 1,2 are the real and imaginary parts.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

Examples Real Oriented Dual-Tree Wavelets

Visualize the six directional wavelets of the real oriented dual-tree
wavelet transform.

Create the first-stage analysis filters for the two trees.

Faf{1} = [0 0
-0.0884 -0.0112
0.0884 0.0112
0.6959 0.0884
0.6959 0.0884
0.0884 -0.6959

-0.0884 0.6959
0.0112 -0.0884
0.0112 -0.0884

0 0];
Faf{2} = [ 0.0112 0

0.0112 0
-0.0884 -0.0884
0.0884 -0.0884
0.6959 0.6959
0.6959 -0.6959
0.0884 0.0884

-0.0884 0.0884
0 0.0112
0 -0.0112];

Create the analysis filters for subsequent stages of the multiresolution
analysis.

af{1} = [ 0.0352 0
0 0

-0.0883 -0.1143
0.2339 0
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0.7603 0.5875
0.5875 -0.7603

0 0.2339
-0.1143 0.0883

0 0
0 -0.0352];

af{2} = [0 -0.0352
0 0

-0.1143 0.0883
0 0.2339

0.5875 -0.7603
0.7603 0.5875
0.2339 0

-0.0883 -0.1143
0 0

0.0352 0];

Obtain the real dual-tree wavelet transform of an image of zeros down
to level 4.

J = 4;
L = 3*2^(J+1);
N = L/2^J;
x = zeros(2*L,3*L);
wt = dddtree2('realdt',x,J,Faf,af);

Insert a 1 in one position of the six subbands and invert the wavelet
transform.

wt.cfs{4}(N/2,N/2+0*N,1,1) = 1;
wt.cfs{4}(N/2,N/2+1*N,2,1) = 1;
wt.cfs{4}(N/2,N/2+2*N,3,1) = 1;
wt.cfs{4}(N/2+N,N/2+0*N,1,2) = 1;
wt.cfs{4}(N/2+N,N/2+1*N,2,2) = 1;
wt.cfs{4}(N/2+N,N/2+2*N,3,2) = 1;
xrec = idddtree2(wt);
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Visualize the six directional wavelets.

imagesc(xrec);
colormap gray; axis off;
title('Real Oriented Dual-Tree Wavelets')

Double-Density Wavelet Transform

Obtain the double-density wavelet transform of an image.

Load the image and obtain the double-density wavelet transform.

load xbox;
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imagesc(xbox); colormap gray;
wt = dddtree2('ddt',xbox,1,'filters1');

Visualize the diagonal details in the two wavelet HH subbands.

HH1 = wt.cfs{1}(:,:,5);
HH2 = wt.cfs{1}(:,:,8);
subplot(211)
imagesc(HH1);
colormap gray;
subplot(212);
imagesc(HH2);
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Complex Dual-Tree Wavelet Transform

Obtain the complex dual-tree wavelet transform of an image. Show that
the complex dual-tree wavelet transform can detect the two different
diagonal directions.

Load the image and obtain the complex dual-tree wavelet transform.

load xbox;
imagesc(xbox); colormap gray;
wt = dddtree2('cplxdt',xbox,1,'FSfarras','qshift10');
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Obtain and display the imaginary parts of the 2 trees.

waveletcfs = wt.cfs{1};
subplot(211)
imagesc(waveletcfs(:,:,3,1,2));
colormap gray;
subplot(212)
imagesc(waveletcfs(:,:,3,2,2));
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See Also dddtree | dddtreecfs | dtfilters | idddtree2

Related
Examples

• “Analytic Wavelets Using the Dual-Tree Wavelet Transform”

Concepts • “Critically Sampled and Oversampled Wavelet Filter Banks”
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Purpose Node depth-position to node index

Syntax

Description depo2ind is a tree-management utility.

For a tree of order ORD, N = depo2ind(ORD,[D P]) computes the indices
N of the nodes whose depths and positions are encoded within [D,P].

The nodes are numbered from left to right and from top to bottom. The
root index is 0.

D and P are column vectors. The values of depths D and positions P must
be such that D ≥ 0 and 0 ≤ P ≤ ORDD-1.

Output indices N are such that 0 ≤ N < (ORDmax(D)-1) / (ORD-1).

Note that for a column vector X, we have depo2ind(O,X) = X.

Examples % Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)

% List t nodes (Depth_Position).
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aln_depo = allnodes(t,'deppos')
aln_depo =

0 0
1 0
1 1
2 0
2 1
2 2
2 3
3 0
3 1
3 6
3 7

% Switch from Depth_Position to index.
aln_ind = depo2ind(ord,aln_depo)
aln_ind =

0
1
2
3
4
5
6
7
8

13
14

See Also ind2depo
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Purpose 1-D detail coefficients

Syntax D = detcoef(C,L,N)
D = detcoef(C,L)

Description detcoef is a one-dimensional wavelet analysis function.

D = detcoef(C,L,N) extracts the detail coefficients at level N from
the wavelet decomposition structure [C,L]. See wavedec for more
information on C and L.

Level N must be an integer such that 1 ≤ N ≤ NMAX where NMAX =
length(L)-2.

D = detcoef(C,L) extracts the detail coefficients at last level NMAX.

If N is a vector of integers such that 1 ≤ N(j) ≤ NMAX:

• DCELL = detcoef(C,L,N,'cells') returns a cell array where
DCELL{j} contains the coefficients of detail N(j).

• If length(N) > 1, DCELL = detcoef(C,L,N) is equivalent to
DCELL = detcoef(C,L,N,'cells').

• DCELL = detcoef(C,L,'cells') is equivalent to
DCELL = detcoef(C,L,[1:NMAX]).

• [D1, ... ,Dp] = detcoef(C,L,[N(1), ... ,N(p)]) extracts
the details coefficients at levels [N(1), ... ,N(p)].

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original one-dimensional signal.
load leleccum;
s = leleccum(1:3920);

% Perform decomposition at level 3 of s using db1.
[c,l] = wavedec(s,3,'db1');

% Extract detail coefficients at levels
% 1, 2 and 3, from wavelet decomposition
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% structure [c,l].
[cd1,cd2,cd3] = detcoef(c,l,[1 2 3]);

% Using some plotting commands,
% the following figure is generated.

See Also appcoef | wavedec
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Purpose 2-D detail coefficients

Syntax D = detcoef2(O,C,S,N)

Description detcoef2 is a two-dimensional wavelet analysis function.

D = detcoef2(O,C,S,N) extracts from the wavelet decomposition
structure [C,S] the horizontal, vertical, or diagonal detail coefficients
for O = 'h'(or 'v' or 'd', respectively), at level N, where N must be
an integer such that 1 ≤ N ≤ size(S,1)-2. See wavedec2 for more
information on C and S.

[H,V,D] = detcoef2('all',C,S,N) returns the horizontal H, vertical
V, and diagonal D detail coefficients at level N.

D = detcoef2('compact',C,S,N) returns the detail coefficients at
level N, stored row-wise.

detcoef2('a',C,S,N) is equivalent to detcoef2('all',C,S,N).

detcoef2('c',C,S,N) is equivalent to detcoef2('compact',C,S,N).

Tips If C and S are obtained from an indexed image analysis or a truecolor
image analysis, D is an m-by-n matrix or an m-by-n-by-3 array,
respectively.

For more information on image formats, see the image and imfinfo
reference pages.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image.
load woman;

% X contains the loaded image.

% Perform decomposition at level 2
% of X using db1.
[c,s] = wavedec2(X,2,'db1');
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sizex = size(X)
sizex =

256 256

sizec = size(c)
sizec =

1 65536

val_s = s
val_s =

64 64
64 64

128 128
256 256

% Extract details coefficients at level 2
% in each orientation, from wavelet decomposition
% structure [c,s].
[chd2,cvd2,cdd2] = detcoef2('all',c,s,2);
sizecd2 = size(chd2)
sizecd2 =

64 64

% Extract details coefficients at level 1
% in each orientation, from wavelet decomposition
% structure [c,s].
[chd1,cvd1,cdd1] = detcoef2('all',c,s,1);
sizecd1 = size(chd1)
sizecd1 =

128 128

See Also appcoef2 | wavedec2
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Purpose WPTREE information

Syntax disp(T)

Description disp(T) displays the content of the WPTREE object T.

Examples % Compute a wavelet packets tree
x = rand(1,1000);
t = wpdec(x,2,'db2');
disp(t)

Wavelet Packet Object Structure
=================================
Size of initial data : [1 1000]
Order : 2
Depth : 2
Terminal nodes : [3 4 5 6]

--------------------------------------------------
Wavelet Name : db2
Low Decomposition filter : [-0.1294 0.2241 0.8365 0.483]
High Decomposition filter : [ -0.483 0.8365 -0.2241 -0.1294]
Low Reconstruction filter : [ 0.483 0.8365 0.2241 -0.1294]
High Reconstruction filter : [-0.1294 -0.2241 0.8365 -0.483]

--------------------------------------------------
Entropy Name : shannon
Entropy Parameter : 0

--------------------------------------------------

See Also get | read | set | write
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Purpose Display lifting scheme

Syntax S = displs(LS,FRM)

Description S = displs(LS,FRM) returns a string describing the lifting scheme LS.
The format string FRM (see sprintf) builds S.

displs(LS) is equivalent to DISPLS(LS,’%12.8f’)

For more information about lifting schemes, see lsinfo.

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

% Visualize the obtained lifting scheme.
displs(lshaar);

lshaar = {...
'd' [ -1.00000000] [0]
'p' [ 0.50000000] [0]
[ 1.41421356] [ 0.70710678] []
};

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
displs(lsnew);

lsnew = {...
'd' [ -1.00000000] [0]
'p' [ 0.50000000] [0]
'p' [ -0.12500000 0.12500000] [0]
[ 1.41421356] [ 0.70710678] []
};

See Also lsinfo
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Purpose Draw wavelet packet decomposition tree (GUI)

Syntax drawtree(T)
F = drawtree(T)
drawtree(T,F)

Description drawtree(T) draws the wavelet packet tree T, and F = drawtree(T)
also returns the figure’s handle.

For an existing figure F produced by a previous call to the drawtree
function, drawtree(T,F) draws the wavelet packet tree T in the figure
whose handle is F.

Examples x = sin(8*pi*[0:0.005:1]);
t = wpdec(x,3,'db2');
fig = drawtree(t);
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%---------------------------------------
% Use command line function to modify t.
%---------------------------------------
t = wpjoin(t,2);
drawtree(t,fig);

See Also readtree
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Purpose Analysis and synthesis filters for oversampled wavelet filter banks

Syntax df = dtfilters(name)
[df,rf] = dtfilters(name)

Description df = dtfilters(name) returns the decomposition (analysis) filters
corresponding to the string, name.

[df,rf] = dtfilters(name) returns the reconstruction (synthesis)
filters corresponding to the string, name.

Input
Arguments

name - Filter name
'dtf1' | 'dddtf1' | 'self1' | 'self2' | ...

Filter name, specified as a string. Valid entries for name are:

• Any valid orthogonal or biorthogonal wavelet name. See wfilters
for details. An orthogonal or biorthogonal wavelet is only valid when
the filter bank type is 'dwt', or when you use the filter as the first
stage in a complex dual-tree transform, 'realdt' or 'cplxdt'. An
orthogonal or biorthogonal wavelet filter is not a valid filter if you
have a double-density, 'ddt' or dual-tree double-density, 'realdddt'
or 'cplxdddt', filter bank. An orthogonal or biorthogonal wavelet
filter is not a valid filter for complex dual-tree filter banks for stages
greater than 1.

• 'dtfP'—With P equal to 1, 2, 3, or 4 returns the first-stage Farras
filters ('FSfarass') and Kingsbury Q-shift filters ('qshiftN' for
subsequent stages. This input is only valid for a dual-tree transform,
'realdt' or 'cplxdt'. Setting P= 1, 2, 3, or 4 specifies the Kingsbury
Q-shift filters with N = 6, 10, 14, or 18 taps respectively.

• 'dddtf1' — Returns the filters for the first and subsequent stages
of the double-density dual-tree transform. This input is only valid
for the double-density dual-tree transforms, 'realdddt' and
'cplxdddt'.
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• 'self1' — Returns 10-tap filters for the double-density wavelet
transform. This option is only valid for double-density wavelet
transforms, 'ddt', 'realdddt', and 'cplxdddt'.

• 'self2' — Returns 16-tap filters for the double-density wavelet
transform. This option is only valid for double-density wavelet
transforms, 'ddt', 'realdddt', and 'cplxdddt'.

• 'filters1'— Returns 6-tap filters for the double-density wavelet
transform, 'ddt'.

• 'filters2'— Returns 12-tap filters for the double-density wavelet
transform, 'ddt'.

• 'farass' — Farrass nearly symmetric filters for a two-channel
perfect reconstruction filter bank. This option is only valid for an
orthogonal critically sampled wavelet transform, 'dwt'.

• 'FSfarass' — Farrass nearly symmetric first-stage filters for a
dual-tree wavelet transform.

• 'qshiftN'— Kingsbury Q-shift N-tap filters with N = 6,10,14, or 18.
The Kingsbury Q-shift filters are most commonly used in dual-tree
wavelet transforms for stages greater than 1.

• 'doubledualfilt' — Filters for one stage of the double-density
dual-tree wavelet transforms, 'realdddt' or 'cplxdddt'.

Output
Arguments

df - Decomposition (analysis) filters
matrix | cell array

Decomposition (analysis) filters, returned as a matrix or cell array of
matrices.

rf - Reconstruction (synthesis) filters
matrix | cell array

Reconstruction (synthesis) filters, returned as a matrix or cell array
of matrices.
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Examples Filters for Complex Dual-Tree Wavelet Transform

Obtain valid filters for the complex dual-tree wavelet transform. The
transform uses Farrass nearly symmetric filters for the first stage and
Kingsbury Q-shift filters with 10 taps for subsequent stages.

Load the noisy Doppler signal. Obtain the filters for the first and
subsequent stages of the complex dual-tree wavelet transform.
Demonstrate perfect reconstruction using the complex dual-tree wavelet
transform.

load noisdopp;
df = dtfilters('dtf2');
dt = dddtree('cplxdt',noisdopp,5,df{1},df{2});
xrec = idddtree(dt);
max(abs(noisdopp-xrec))

Filters for Double-Density Wavelet Transform

Obtain valid filters for the double-density wavelet transform.

Load the noisy Doppler signal. Obtain the filters for the double-density
wavelet transform. The double-density wavelet transform uses the
same filters at all stages. Demonstrate perfect reconstruction using the
double-density wavelet transform.

df = dtfilters('filters1');
load noisdopp;
dt = dddtree('ddt',noisdopp,5,df,df);
xrec = idddtree(dt);
max(abs(noisdopp-xrec))

See Also dddtree | dddtree2
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Purpose DTREE constructor

Syntax T = dtree(ORD,D,X)
T = dtree(ORD,D,X,U)
[T,NB] = dtree(...)
[T,NB] =
dtree('PropName1',PropValue1,'PropName2',PropValue2,

...)

Description T = dtree(ORD,D,X) returns a complete data tree (DTREE) object of
order ORD and depth D. The data associated with the tree T is X.

With T = dtree(ORD,D,X,U) you can set a user data field.

[T,NB] = dtree(...) returns also the number of terminal nodes
(leaves) of T.

[T,NB] =
dtree('PropName1',PropValue1,'PropName2',PropValue2, ...) is
the most general syntax to construct a DTREE object.

The valid choices for 'PropName' are

'order' Order of the tree

'depth' Depth of the tree

'data' Data associated to the tree

'spsch' Split scheme for nodes

'ud' User data field

The split scheme field is an order ORD by 1 logical array. The root of the
tree can be split and it has ORD children. If spsch(j) = 1, you can
split the j-th child. Each node that you can split has the same property
as the root node.

For more information on object fields, type help dtree/get.
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Class DTREE (Parent class: NTREE)

Fields dtree Parent object

allNI All nodes information

terNI Terminal nodes information

Examples % Create a data tree.
x = [1:10];
t = dtree(3,2,x);
t = nodejoin(t,2);

See Also ntree | wtbo
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Purpose Single-level discrete 1-D wavelet transform

Syntax [cA,cD] = dwt(X,'wname')
[cA,cD] = dwt(X,Lo_D,Hi_D)
[cA,cD] = dwt(...,'mode',MODE)

Description The dwt command performs a single-level one-dimensional wavelet
decomposition with respect to either a particular wavelet ('wname', see
wfilters for more information) or particular wavelet decomposition
filters (Lo_D and Hi_D) that you specify.

[cA,cD] = dwt(X,'wname') computes the approximation coefficients
vector cA and detail coefficients vector cD, obtained by a wavelet
decomposition of the vector X. The string 'wname' contains the wavelet
name.

[cA,cD] = dwt(X,Lo_D,Hi_D) computes the wavelet decomposition as
above, given these filters as input:

• Lo_D is the decomposition low-pass filter.

• Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.

Let lx = the length of X and lf = the length of the filters Lo_D and Hi_D;
then length(cA) = length(cD) = la where la = ceil(lx/2), if the
DWT extension mode is set to periodization. For the other extension
modes, la = floor(lx+lf-1)/2).

For more information about the different Discrete Wavelet Transform
extension modes, see dwtmode.

[cA,cD] = dwt(...,'mode',MODE) computes the wavelet
decomposition with the extension mode MODE that you specify. MODE is a
string containing the desired extension mode.

Example:

[cA,cD] = dwt(x,'db1','mode','sym');
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Examples DWT Using Wavelet Name

Obtain the level-1 DWT of the noisy Doppler signal using a wavelet
name.

load noisdopp;
[A,D] = dwt(noisdopp,'sym4');

DWT Using Wavelet and Scaling Filters

Obtain the level-1 DWT of the noisy Doppler signal using wavelet and
scaling filters.

load noisdopp;
[Lo_D,Hi_D] = wfilters('bior3.5','d');
[A,D] = dwt(noisdopp,Lo_D,Hi_D);

Algorithms Starting from a signal s, two sets of coefficients are computed:
approximation coefficients CA1, and detail coefficients CD1. These
vectors are obtained by convolving s with the low-pass filter Lo_D for
approximation and with the high-pass filter Hi_D for detail, followed by
dyadic decimation.

More precisely, the first step is

The length of each filter is equal to 2N. If n = length(s), the signals
F and G are of length n + 2N − 1, and then the coefficients CA1 and
CD1 are of length

1-154



dwt

floor
n

N
−⎛

⎝⎜
⎞
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+1
2

To deal with signal-end effects involved by a convolution-based
algorithm, a global variable managed by dwtmode is used. This variable
defines the kind of signal extension mode used. The possible options
include zero-padding (used in the previous example) and symmetric
extension, which is the default mode.

Note For the same input, this dwt function and the DWT block in
the Signal Processing Toolbox™ do not produce the same results.
The blockset is designed for real-time implementation while Wavelet
Toolbox™ software is designed for analysis, so they produce handle
boundary conditions and filter states differently.

To make the dwt function output match the DWT block output, set the
function boundary condition to zero-padding by typing dwtmode('zpd')
at the MATLAB® command prompt. To match the latency of the DWT
block, which is implemented using FIR filters, add zeros to the input of
the dwt function. The number of zeros you add must be equal to half
the filter length.

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference
series in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition:
the wavelet representation,” IEEE Pattern Anal. and Machine Intell.,
vol. 11, no. 7, pp. 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed.
(English translation: Wavelets and operators, Cambridge Univ. Press.
1993.)

See Also dwtmode | idwt | wavedec | waveinfo
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Purpose Single-level discrete 2-D wavelet transform

Syntax [cA,cH,cV,cD] = dwt2(X,'wname')
[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D)
[cA,cH,cV,cD] = dwt2(...,'mode',MODE)

Description The dwt2 command performs a single-level two-dimensional wavelet
decomposition with respect to either a particular wavelet ('wname', see
wfilters for more information) or particular wavelet decomposition
filters (Lo_D and Hi_D) you specify.

[cA,cH,cV,cD] = dwt2(X,'wname') computes the approximation
coefficients matrix cA and details coefficients matrices cH, cV, and cD
(horizontal, vertical, and diagonal, respectively), obtained by wavelet
decomposition of the input matrix X. The 'wname' string contains the
wavelet name.

[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D) computes the two-dimensional
wavelet decomposition as above, based on wavelet decomposition filters
that you specify.

• Lo_D is the decomposition low-pass filter.

• Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.

Let sx = size(X) and lf = the length of filters; then
size(cA) = size(cH) = size(cV) = size(cD) = sa where sa =
ceil(sx/2), if the DWT extension mode is set to periodization. For the
other extension modes, sa = floor((sx+lf-1)/2).

For information about the different Discrete Wavelet Transform
extension modes, see dwtmode.

[cA,cH,cV,cD] = dwt2(...,'mode',MODE) computes the wavelet
decomposition with the extension mode MODE that you specify.

MODE is a string containing the desired extension mode.

An example of valid use is

1-156



dwt2

[cA,cH,cV,cD] = dwt2(x,'db1','mode','sym');

Tips When X represents an indexed image, then X, as well as the output
arrays cA,cH,cV,cD are m-by-n matrices. When X represents a truecolor
image, it is an m-by-n-by-3 array, where each m-by-n matrix represents a
red, green, or blue color plane concatenated along the third dimension.

For more information on image formats, see the image and imfinfo
reference pages.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image.
load woman;

% X contains the loaded image.
% map contains the loaded colormap.
nbcol = size(map,1);

% Perform single-level decomposition
% of X using db1.
[cA1,cH1,cV1,cD1] = dwt2(X,'db1');

% Images coding.
cod_X = wcodemat(X,nbcol);
cod_cA1 = wcodemat(cA1,nbcol);
cod_cH1 = wcodemat(cH1,nbcol);
cod_cV1 = wcodemat(cV1,nbcol);
cod_cD1 = wcodemat(cD1,nbcol);
dec2d = [...

cod_cA1, cod_cH1; ...
cod_cV1, cod_cD1 ...
];

% Using some plotting commands,
% the following figure is generated.
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Algorithms For images, there exist an algorithm similar to the one-dimensional
case for two-dimensional wavelets and scaling functions obtained from
one- dimensional ones by tensorial product.

This kind of two-dimensional DWT leads to a decomposition of
approximation coefficients at level j in four components: the
approximation at level j + 1, and the details in three orientations
(horizontal, vertical, and diagonal).

The following chart describes the basic decomposition steps for images:
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Note To deal with signal-end effects involved by a convolution-based
algorithm, a global variable managed by dwtmode is used. This variable
defines the kind of signal extension mode used. The possible options
include zero-padding (used in the previous example) and symmetric
extension, which is the default mode.

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference
series in applied mathematics. SIAM Ed.
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Mallat, S. (1989), “A theory for multiresolution signal decomposition:
the wavelet representation,” IEEE Pattern Anal. and Machine Intell.,
vol. 11, no. 7, pp. 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed.
(English translation: Wavelets and operators, Cambridge Univ. Press.
1993.)

See Also dwtmode | idwt2 | wavedec2 | waveinfo
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Purpose Single-level discrete 3-D wavelet transform

Syntax WT = dwt3(X,'wname')
WT = dwt3(X,'wname','mode','ExtM')
WT = dwt3(X,W,...)
WT = dwt3(X,WF,...)

Description dwt3 performs a single-level three-dimensional wavelet decomposition
using either a particular wavelet ('wname') or the wavelet decomposition
and reconstruction filters you specify. The decomposition also uses the
specified DWT extension mode (see dwtmode).

WT = dwt3(X,'wname') returns the 3-D wavelet transform of the 3-D
array X. 'wname' is a string containing the wavelet name. The default
extension mode is 'sym'. For more information on wname, see wfilters.

WT = dwt3(X,'wname','mode','ExtM') uses the extension mode
'ExtM'.

WT is a structure with the following fields shown in the table.

sizeINI Size of the three-dimensional array X.

mode Name of the wavelet transform extension mode.

filters Structure with four fields: LoD, HiD, LoR, HiR,
which are the filters used for DWT.

dec 2 x 2 x 2 cell array containing the coefficients of
the decomposition.

dec{i,j,k}, i,j,k = 1 or 2 contains the
coefficients obtained by low-pass filtering (for i
or j or k = 1) or high-pass filtering (for i or j or
k = 2)

WT = dwt3(X,W,...) specify three wavelets, one for each direction. W =
{'wname1','wname2','wname3'} or W is a structure with 3 fields 'w1',
'w2', 'w3' containing strings that are the names of wavelets.
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WT = dwt3(X,WF,...) specify four filters, two for decomposition, and
two for reconstructionm or 3 x 4 filters (one quadruplet by direction).
WF is either a cell array (1 x 4) or (3 x 4) : {LoD,HiD,LoR,HiR} or a
structure with the four fields 'LoD','HiD','LoR','HiR'.

Examples % Define the original 3-D data.
X = reshape(1:64,4,4,4)

X(:,:,1) =

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

X(:,:,2) =

17 21 25 29
18 22 26 30
19 23 27 31
20 24 28 32

X(:,:,3) =

33 37 41 45
34 38 42 46
35 39 43 47
36 40 44 48

X(:,:,4) =

49 53 57 61
50 54 58 62
51 55 59 63
52 56 60 64

% Perform single level decomposition of X using db1.
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wt = dwt3(X,'db1')

wt =

sizeINI: [4 4 4]
filters: [1x1 struct]

mode: 'sym'
dec: {2x2x2 cell}

% Decompose X using db2.
[LoD,HiD,LoR,HiR] = wfilters('db2');
wt = dwt3(X,{LoD,HiD,LoR,HiR})

wt =

sizeINI: [4 4 4]
filters: [1x1 struct]

mode: 'sym'
dec: {2x2x2 cell}

% Decompose X using different wavelets, one for
% each orientation (db1, db2 and again db1).
WS = struct('w1','db1','w2','db2','w3','db1');
wt = dwt3(X,WS,'mode','per')

wt =

sizeINI: [4 4 4]
filters: [1x1 struct]

mode: 'per'
dec: {2x2x2 cell}

WF = wt.filters;

% Decompose X using the filters given by WF and
% set the extension mode to symmetric.
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wtBIS = dwt3(X,WF,'mode','sym')

wtBIS =

sizeINI: [4 4 4]
filters: [1x1 struct]

mode: 'sym'
dec: {2x2x2 cell}

See Also dwtmode | idwt3 | wavedec3 | waverec3 | waveinfo | wfilters
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Purpose Discrete wavelet transform extension mode

Syntax ST = dwtmode
ST = dwtmode('status')
dwtmode('mode')

Description dwtmode sets the signal or image extension mode for discrete wavelet
and wavelet packet transforms. The extension modes represent
different ways of handling the problem of border distortion in signal
and image analysis. For more information, see “Border Effects” , in
the User’s Guide.

dwtmode or dwtmode('status') display the current mode.

ST = dwtmode or ST = dwtmode('status') display and returns in ST
the current mode.

ST = dwtmode('status','nodisp') returns in ST the current mode
and no text (status or warning) is displayed in the MATLAB Command
Window.

dwtmode('mode') sets the DWT extension mode according to the value
of 'mode':

'mode' DWT Extension Mode

'sym' or 'symh' Symmetric-padding (half-point):
boundary value symmetric replication
— default mode

'symw' Symmetric-padding (whole-point):
boundary value symmetric replication

'asym' or 'asymh' Antisymmetric-padding (half-point):
boundary value antisymmetric
replication

'asymw' Antisymmetric-padding (whole-point):
boundary value antisymmetric
replication
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'mode' DWT Extension Mode

'zpd' Zero-padding

'spd' or 'sp1' Smooth-padding of order 1 (first
derivative interpolation at the edges)

'sp0' Smooth-padding of order 0 (constant
extension at the edges)

'ppd' Periodic-padding (periodic extension at
the edges)

For more information on symmetric extension modes see “References”.

The DWT associated with these five modes is slightly redundant. But,
the IDWT ensures a perfect reconstruction for any of the five previous
modes whatever is the extension mode used for DWT.

dwtmode('per') sets the DWT mode to periodization.

This mode produces the smallest length wavelet decomposition. But,
the extension mode used for IDWT must be the same to ensure a perfect
reconstruction.

Using this mode, dwt and dwt2 produce the same results as the obsolete
functions dwtper and dwtper2, respectively.

All functions and GUI tools involving the DWT (1-D & 2-D) or Wavelet
Packet transform (1-D & 2-D) use the specified DWT extension mode.

dwtmode updates a global variable allowing the use of these six signal
extensions. The extension mode should only be changed using this
function. Avoid changing the global variable directly.

The default mode is loaded from the file DWTMODE.DEF (in the
current path) if it exists. If not, the file DWTMODE.CFG (in the
toolbox/wavelet/wavelet folder) is used.

dwtmode('save',MODE) saves MODE as the new default mode in the
file DWTMODE.DEF (in the current folder). If a file with the same name
already exists in the current folder, it is deleted before saving.
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dwtmode('save') is equivalent to dwtmode('save',CURRENTMODE).

In these last two cases, the new default mode saved in the file
DWTMODE.DEF will be active as default mode in the next MATLAB
session.

Examples % If the DWT extension mode global variable does not
% exist, default is Symmetrization.
clear global
dwtmode

******************************************
** DWT Extension Mode: Symmetrization **
******************************************

% Display current DWT signal extension mode.
dwtmode

******************************************
** DWT Extension Mode: Symmetrization **
******************************************
% Change to Periodization extension mode.
dwtmode('per')

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! WARNING: Change DWT Extension Mode !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

*****************************************
** DWT Extension Mode: Periodization **
*****************************************

% Display current DWT signal extension mode.
dwtmode

*****************************************
** DWT Extension Mode: Periodization **
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*****************************************

Note You should change the extension mode only by using dwtmode.
Avoid changing the global variable directly.

References Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-
Cambridge Press.

See Also idwt | idwt2 | dwt | dwt2 | wextend
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Purpose Dyadic downsampling

Syntax Y = dyaddown(X,EVENODD)
Y = dyaddown(X)
Y = dyaddown(X,EVENODD,'type')
Y = dyaddown(X,'type',EVENODD)
Y = dyaddown(X)
Y = dyaddown(X,'type')
Y = dyaddown(X,0,'type')
Y = dyaddown(X,EVENODD)
Y = dyaddown(X,EVENODD,'c')

Description Y = dyaddown(X,EVENODD) where X is a vector, returns a version of
X that has been downsampled by 2. Whether Y contains the even- or
odd-indexed samples of X depends on the value of positive integer
EVENODD:

• If EVENODD is even, then Y(k) = X(2k).

• If EVENODD is odd, then Y(k) = X(2k+1).

Y = dyaddown(X) is equivalent to Y = dyaddown(X,0) (even-indexed
samples).

Y = dyaddown(X,EVENODD,'type') or Y =
dyaddown(X,'type',EVENODD), where X is a matrix, returns a version
of X obtained by suppressing one out of two:

Columns of X If 'type'= 'c'

Rows of X If 'type'= 'r'

Rows and columns of X If 'type'= 'm'

according to the parameter EVENODD, which is as above.

If you omit the EVENODD or 'type' arguments, dyaddown defaults to
EVENODD = 0 (even-indexed samples) and 'type'= 'c' (columns).

Y = dyaddown(X) is equivalent to Y = dyaddown(X,0,'c').
Y = dyaddown(X,'type') is equivalent to Y = dyaddown(X,0,'type').
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Y = dyaddown(X,EVENODD) is equivalent to Y =
dyaddown(X,EVENODD,'c').

Examples % For a vector.
s = 1:10
s =

1 2 3 4 5 6 7 8 9 10

dse = dyaddown(s) % Downsample elements with even indices.
dse =

2 4 6 8 10
% or equivalently
dse = dyaddown(s,0)
dse =

2 4 6 8 10

dso = dyaddown(s,1) % Downsample elements with odd indices.
dso =

1 3 5 7 9

% For a matrix.
s = (1:3)'*(1:4)
s =

1 2 3 4
2 4 6 8
3 6 9 12

dec = dyaddown(s,0,'c') % Downsample columns with even indices.
dec =

2 4
4 8
6 12

der = dyaddown(s,1,'r') % Downsample rows with odd indices.
der =
1 2 3 4
3 6 9 12
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dem = dyaddown(s,1,'m') % Downsample rows and columns
% with odd indices.

dem =
1 3
3 9

References Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks,
Wellesley-Cambridge Press.

See Also dyadup
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Purpose Dyadic upsampling

Syntax Y = dyadup(X,EVENODD)
Y = dyadup(X)
Y = dyadup(X,EVENODD,'type')
Y = dyadup(X,'type',EVENODD)
Y = dyadup(X)
Y = dyaddown(X,1,'c')
Y = dyadup(X,'type')
Y = dyadup(X,1,'type')
Y = dyadup(X,EVENODD)
Y = dyadup(X,EVENODD,'c')

Description dyadup implements a simple zero-padding scheme very useful in the
wavelet reconstruction algorithm.

Y = dyadup(X,EVENODD), where X is a vector, returns an extended copy
of vector X obtained by inserting zeros. Whether the zeros are inserted
as even- or odd-indexed elements of Y depends on the value of positive
integer EVENODD:

• If EVENODD is even, then Y(2k 1) = X(k), Y(2k) = 0.

• If EVENODD is odd, then Y(2k 1) = 0, Y(2k) = X(k).

Y = dyadup(X) is equivalent to Y = dyadup(X,1) (odd-indexed
samples).

Y = dyadup(X,EVENODD,'type') or Y = dyadup(X,'type',EVENODD),
where X is a matrix, returns extended copies of X obtained by inserting

Columns in X If 'type'= 'c'

Rows in X If 'type'= 'r'

Rows and columns in X If 'type'= 'm'

according to the parameter EVENODD, which is as above.
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If you omit the EVENODD or 'type' arguments, dyadup defaults to
EVENODD = 1 (zeros in odd-indexed positions) and 'type'= 'c' (insert
columns).

Y = dyadup(X) is equivalent to Y = dyaddown(X,1,'c').

Y = dyadup(X,'type') is equivalent to Y = dyadup(X,1,'type').
Y = dyadup(X,EVENODD) is equivalent to Y = dyadup(X,EVENODD,'c').

Examples % For a vector.
s = 1:5
s =

1 2 3 4 5

dse = dyadup(s) % Upsample elements at odd indices.
dse =

0 1 0 2 0 3 0 4 0 5 0

% or equivalently
dse = dyadup(s,1)
dse =

0 1 0 2 0 3 0 4 0 5 0

dso = dyadup(s,0) % Upsample elements at even indices.
dso =

1 0 2 0 3 0 4 0 5

% For a matrix.
s = (1:2)'*(1:3)
s =

1 2 3
2 4 6

der = dyadup(s,1,'r') % Upsample rows at even indices.
der =

0 0 0
1 2 3
0 0 0
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2 4 6
0 0 0

doc = dyadup(s,0,'c') % Upsample columns at odd indices.
doc =

1 0 2 0 3
2 0 4 0 6

dem = dyadup(s,1,'m') % Upsample rows and columns
% at even indices.

dem =
0 0 0 0 0 0 0
0 1 0 2 0 3 0
0 0 0 0 0 0 0
0 2 0 4 0 6 0
0 0 0 0 0 0 0

% Using default values for dyadup and dyaddown, we have:
% dyaddown(dyadup(s)) = s.
s = 1:5
s =

1 2 3 4 5

uds = dyaddown(dyadup(s))
uds =

1 2 3 4 5

% In general reversed identity is false.

References Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks,
Wellesley-Cambridge Press.

See Also dyaddown
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Purpose Entropy update (wavelet packet)

Syntax T = entrupd(T,ENT)
T = entrupd(T,ENT,PAR)

Description entrupd is a one- or two-dimensional wavelet packet utility.

T = entrupd(T,ENT) or T = entrupd(T,ENT,PAR) returns for a given
wavelet packet tree T, the updated tree using the entropy function ENT
with the optional parameter PAR (see wenergy for more information).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal.
load noisdopp; x = noisdopp;

% Decompose x at depth 2 with db1 wavelet packets
% using shannon entropy.
t = wpdec(x,2,'db1','shannon');

% Read entropy of all the nodes.
nodes = allnodes(t);
ent = read(t,'ent',nodes);
ent'
ent =

1.0e+04 *
-5.8615 -6.8204 -0.0350 -7.7901 -0.0497 -0.0205 -0.0138

% Update nodes entropy.
t = entrupd(t,'threshold',0.5);
nent = read(t,'ent');
nent'
nent =

937 488 320 241 175 170 163

See Also wenergy | wpdec | wpdec2
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Purpose Complex frequency B-spline wavelet

Syntax [PSI,X] = fbspwavf(LB,UB,N,M,FB,FC)

Description [PSI,X] = fbspwavf(LB,UB,N,M,FB,FC) returns values of the complex
frequency B-Spline wavelet defined by the order parameter M (M is an
integer such that 1 ≤ M), a bandwidth parameter FB, and a wavelet
center frequency FC.

The function PSI is computed using the explicit expression

PSI(X) = (FB^0.5)*((sinc(FB*X/M).^M).*exp(2*i*pi*FC*X))

on an N point regular grid in the interval [LB,UB].

FB and FC must be such that FC > 0 and > FB > 0.

Output arguments are the wavelet function PSI computed on the grid X.

Examples % Set order, bandwidth and center frequency parameters.
m = 2; fb = 0.5; fc = 1;

% Set effective support and grid parameters.
lb = -20; ub = 20; n = 1000;

% Compute complex Frequency B-Spline wavelet fbsp2-0.5-1.
[psi,x] = fbspwavf(lb,ub,n,m,fb,fc);

% Plot complex Frequency B-Spline wavelet.
subplot(211)
plot(x,real(psi))
title('Complex Frequency B-Spline wavelet fbsp2-0.5-1')
xlabel('Real part'), grid
subplot(212)
plot(x,imag(psi))
xlabel('Imaginary part'), grid
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References Teolis, A. (1998), Computational signal processing with wavelets,
Birkhauser, p. 63.

See Also waveinfo
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Purpose Transform quadruplet of filters to lifting scheme

Syntax LS = filt2ls(LoD,HiD,LoR,HiR)

Description LS = filt2ls(LoD,HiD,LoR,HiR) returns the lifting scheme LS
associated with the four input filters LoD, HiD, LoR, and HiR that verify
the perfect reconstruction condition.

Examples [LoD,HiD,LoR,HiR] = wfilters('db2')

LoD =

-0.1294 0.2241 0.8365 0.4830

HiD =

-0.4830 0.8365 -0.2241 -0.1294

LoR =

0.4830 0.8365 0.2241 -0.1294

HiR =

-0.1294 -0.2241 0.8365 -0.4830

LS = filt2ls(LoD,HiD,LoR,HiR);
displs(LS);

LS = {...
'd' [ -1.73205081] [0]
'p' [ -0.06698730 0.43301270] [1]
'd' [ 1.00000000] [-1]
[ 1.93185165] [ 0.51763809] []
};
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LSref = liftwave('db2');
displs(LSref);

LSref = {...
'd' [ -1.73205081] [0]
'p' [ -0.06698730 0.43301270] [1]
'd' [ 1.00000000] [-1]
[ 1.93185165] [ 0.51763809] []
};

See Also ls2filt | lsinfo
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Purpose Gaussian wavelet

Syntax [PSI,X] = gauswavf(LB,UB,N,P)
[PSI,X] = gauswavf(LB,UB,N)
[PSI,X] = gauswavf(LB,UB,N,1)

Description [PSI,X] = gauswavf(LB,UB,N,P) returns values of the P-th derivative
of the Gaussian function on an N point regular grid for the interval
[LB,UB]. Cp is such that the 2-norm of the P-th derivative of F is equal
to 1.

For P > 8, Symbolic Math Toolbox software is required.

Output arguments are the wavelet function PSI computed on the grid X.

[PSI,X] = gauswavf(LB,UB,N) is equivalent to
[PSI,X] = gauswavf(LB,UB,N,1).

These wavelets have an effective support of [-5 5].

Examples % Set effective support and grid parameters.
lb = -5; ub = 5; n = 1000;

% Compute Gaussian wavelet of order 8.
[psi,x] = gauswavf(lb,ub,n,8);

% Plot Gaussian wavelet of order 8.
plot(x,psi),
title('Gaussian wavelet of order 8'), grid
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See Also waveinfo
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Purpose WPTREE contents

Syntax [FieldValue1,FieldValue2, ...] = get(T,'FieldName1',
'FieldName2', ...)

[FieldValue1,FieldValue2, ...] = get(T)

Description [FieldValue1,FieldValue2, ...] = get(T,'FieldName1',
'FieldName2', ...) returns the content of the specified fields for the
WPTREE object T.

For the fields that are objects or structures, you can get the subfield
contents, giving the name of these subfields as 'FieldName' values.
(See “Examples” below.)

[FieldValue1,FieldValue2, ...] = get(T) returns all the field
contents of the tree T.

The valid choices for 'FieldName' are

'dtree' DTREE parent object

'wavInfo' Structure (wavelet information)

The fields of the wavelet information structure, 'wavInfo', are also
valid for 'FieldName':

'wavName' Wavelet name

'Lo_D' Low Decomposition filter

'Hi_D' High Decomposition filter

'Lo_R' Low Reconstruction filter

'Hi_R' High Reconstruction filter

'entInfo' Structure (entropy information)
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The fields of the entropy information structure, 'entInfo', are also
valid for 'FieldName':

'entName' Entropy name

'entPar' Entropy parameter

Or fields of DTREE parent object:

'ntree' NTREE parent object

'allNI' All nodes information

'terNI' Terminal nodes information

Or fields of NTREE parent object:

'wtbo' WTBO parent object

'order' Order of the tree

'depth' Depth of the tree

'spsch' Split scheme for nodes

'tn' Array of terminal nodes of the tree

Or fields of WTBO parent object:

'wtboInfo' Object information

'ud' Userdata field

Examples % Compute a wavelet packets tree
x = rand(1,1000);
t = wpdec(x,2,'db2');
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o = get(t,'order');
[o,tn] = get(t,'order','tn');
[o,allNI,tn] = get(t,'order','allNI','tn');
[o,wavInfo,allNI,tn] = get(t,'order','wavInfo','allNI','tn');
[o,tn,Lo_D,EntName] = get(t,'order','tn','Lo_D','EntName');
[wo,nt,dt] = get(t,'wtbo','ntree','dtree');

See Also disp | read | set | write
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Purpose Inverse CWT

Syntax xrec = icwtft(cwtstruct)
xrec = icwtft(cwtstruct,'plot')
xrec = icwtft(cwtstruct,'signal',SIG,'plot')

Description xrec = icwtft(cwtstruct) returns the inverse continuous wavelet
transform of the CWT coefficients contained in the cfs field of the
structure array cwtstruct. Obtain the structure array cwtstruct as
the output of cwtft.

xrec = icwtft(cwtstruct,'plot') plots the reconstructed signal.

xrec = icwtft(cwtstruct,'signal',SIG,'plot') places a radio
button in the bottom left corner of the plot. Enabling the radio button
superimposes the plot of the input signal SIG on the plot of the
reconstructed signal. By default the radio button is not enabled and
only the reconstructed signal is plotted.

Input
Arguments

cwtstruct

Structure array containing six fields.

• dt — The sampling period

• cfs — CWT coefficient matrix

• scales — Vector of scales

• wav — Analyzing wavelet used in the CWT

• omega— Angular frequencies used in the Fourier transform

• meanSig — Mean of the analyzed signal
cwtstruct is the output of cwtft.

Output
Arguments

xrec

Reconstructed signal
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Definitions Inverse CWT

icwtft computes the inverse CWT based on a discretized version of the
single integral formula due to Morlet. The Wavelet Toolbox Getting
Started Guide contains a brief description of the theoretical foundation
for the single integral formula in “Inverse Continuous Wavelet
Transform”. The discretized version of this integral is presented in [5]

Examples Compute the CWT and inverse CWT of two sinusoids with disjoint
support.

N = 1024;
t = linspace(0,1,N);
y = sin(2*pi*8*t).*(t<=0.5)+sin(2*pi*16*t).*(t>0.5);
dt = 0.05;
s0 = 2*dt;
ds = 0.4875;
NbSc = 20;
wname = 'morl';
sig = {y,dt};
sca = {s0,ds,NbSc};
wave = {wname,[]};
cwtsig = cwtft(sig,'scales',sca,'wavelet',wave);

% Compute inverse CWT and plot reconstructed signal with original
sigrec = icwtft(cwtsig,'signal',sig,'plot');

Select the radio button in the bottom left corner of the plot.
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Use the inverse CWT to approximate a trend in a time series. Construct
a time series consisting of a polynomial trend, a sinewave (oscillatory
component), and additive white Gaussian noise. Obtain the CWT of
the input signal and use the inverse CWT based on only the coarsest
scales to reconstruct an approximation to the trend. To obtain an
accurate approximation based on select scales use the default power of
two spacing for the scales in the continuous wavelet transform. See
cwtft for details.

t = linspace(0,1,1e3);
% Polynomial trend
x = t.^3-t.^2;
% Periodic term
x1 = 0.25*cos(2*pi*250*t);
% Reset random number generator for reproducible results
rng default
y = x+x1+0.1*randn(size(t));
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% Obtain CWT of input time series
cwty = cwtft({y,0.001},'wavelet','morl');
% Zero out all but the coarsest scale CWT coefficients
cwty.cfs(1:16,:) = 0;
% Reconstruct a signal approximation based on the coarsest scales
xrec = icwtft(cwty);
plot(t,y,'k'); hold on;
xlabel('Seconds'); ylabel('Amplitude');
plot(t,x,'b','linewidth',2);
plot(t,xrec,'r','linewidth',2);
legend('Original Signal','Polynomial Trend','Inverse CWT Approximation');
figure
plot(t,x,'b'); hold on;
xlabel('Seconds'); ylabel('Amplitude');
plot(t,xrec,'r','linewidth',2);
legend('Polynomial Trend','Inverse CWT Approximation');
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You can also use the following syntax to plot the approximation. Select
the radio button to view the original polynomial trend superimposed on
the wavelet approximation.

% Input the polynomial trend as the value of 'signal'
xrec = icwtft(cwty,'signal',x,'plot');
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References [1] Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society
for Industrial and Applied Mathematics (SIAM), 1992.

[2] Farge, M. “Wavelet Transforms and Their Application to
Turbulence”, Ann. Rev. Fluid. Mech., 1992, 24, 395–457.

[3] Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA:
Academic Press, 1998.

[4] Sun,W. “Convergence of Morlet’s Reconstruction Formula”, preprint,
2010.

[5] Torrence, C. and G.P. Compo “A Practical Guide to Wavelet
Analysis”, Bull. Am. Meteorol. Soc., 79, 61–78, 1998.

See Also cwt | cwtft
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How To • “Continuous Wavelet Transform”

• “DFT-Based Continuous Wavelet Transform”

• “Inverse Continuous Wavelet Transform”
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Purpose Inverse continuous wavelet transform (CWT) for linearly spaced scales

Syntax xrec = icwtlin(cwtstruct)
xrec = icwtlin(wav,meanSIG,cfs,scales,dt)
xrec = icwtin(...,'plot')
xrec = icwtlin (...,'signal',SIG,'plot')
xrec = icwtlin(...,Name,Value)

Description xrec = icwtlin(cwtstruct) returns the inverse continuous wavelet
transform (CWT) of the CWT coefficients obtained at linearly-spaced
scales.

Note To use icwtlin you must:

• Use linearly-spaced scales in the CWT. icwtlin does not verify that
the scales are linearly-spaced.

• Use one of the supported wavelets. See “Input Arguments” on page
1-193 for a list of supported wavelets.

xrec = icwtlin(wav,meanSIG,cfs,scales,dt) returns the inverse
CWT of the coefficients in cfs. The inverse CWT is obtained using the
wavelet wav, the linearly spaced scales scales, the sampling period
dt, and the mean signal value meanSig.

xrec = icwtin(...,'plot') plots the reconstructed signal xrec along
with the CWT coefficients and CWT moduli. If the analyzing wavelet
is complex-valued, the plot includes the real and imaginary parts of
the CWT coefficients.

xrec = icwtlin (...,'signal',SIG,'plot') places a radio button
in the bottom-left corner of the plot. Enabling the radio button
superimposes the plot of the input signal SIG on the plot of the
reconstructed signal. SIG can be a structure array, a cell array, or a
vector. If SIG is a structure array, there must be two fields: val and
period. The val field contains the signal and the period field contains
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the sampling period. If SIG is a cell array, SIG{1} contains the signal
and SIG{2} is the sampling period.

xrec = icwtlin(...,Name,Value) returns the inverse CWT transform
with additional options specified by one or more Name,Value pair
arguments.

Input
Arguments

cwtstruct

A structure array that is the output of cwtft or constructed from the
output of cwt. If you obtain cwtstruct from cwtft, the structure array
contains six fields:

• cfs — CWT coefficient matrix

• scales— Vector of linearly spaced scales. The scale vector must be
linearly-spaced to ensure accurate reconstruction. icwtlin does not
check that the spacing of your scale vector is linear.

• wav — Analyzing wavelet. icwtlin uses this wavelet as the
reconstruction wavelet. The supported wavelets are:

- 'dog'— An m-th order derivative of Gaussian wavelet where m is
a positive even integer

- 'morl' — Analytic Morlet wavelet

- 'morlex' — Nonanalytic Morlet wavelet

- 'morl0' — Nonanalytic Morlet wavelet with exact zero mean

- 'mexh' — Mexican-hat wavelet. This argument represents a
special case of the derivative of Gaussian wavelet with m=2.

- 'paul' — Paul wavelet

• omega — Angular frequencies used in the Fourier transform in
radians/sample

• MeanSIG — Signal mean

• dt — Sampling period in seconds
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If you create cwtstruct from the output of cwt, cwtstruct contains
all of the preceding fields except omega.

Using cwt to obtain the CWT coefficients, the valid analyzing wavelets
are:

• Coiflets — 'coif1','coif2' ,'coif3' ,'coif4', 'coif5'

• Biorthogonal wavelets — 'bior2.2', 'bior2.4', 'bior2.6',
'bior2.8', 'bior4.4', 'bior5.5', bior6.8

• Reverse biorthogonal wavelets — 'rbio2.2', 'rbio2.4', 'rbio2.6',
'rbio2.8', 'rbio4.4', 'rbio5.5', 'rbio6.8'

• Complex Gaussian wavelets — 'cgau2', 'cgau4', 'cgau6', 'cgau8'

Name-Value Pair Arguments

’IdxSc’

Vector of scales to use in the signal reconstruction. Specifying a subset
of scales results in a scale-localized approximation of the analyzed
signal.

Output
Arguments

xrec

Reconstructed signal. Signal approximation based on the input CWT
coefficient matrix, analyzing wavelet, selected scales, and sampling
period.

The purpose of the CWT inversion algorithm is not to produce a perfect
reconstruction of the input signal. The inversion preserves time and
scale-localized features in the reconstructed signal. The amplitude
scaling in the reconstructed signal, however, can be significantly
different. This difference in scaling can occur whether or not you use all
the CWT coefficients in the inversion.

Examples Compute the inverse CWT of a sum of sine waves with disjoint support.

% Define the signal
N = 100;
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t = linspace(0,1,N);
Y = sin(8*pi*t).*(t<=0.5) + sin(16*pi*t).*(t>0.5) ;

% Define parameters before analysis
dt = 0.001;
maxsca = 1; s0 = 2*dt; ds = 2*dt;
scales = s0:ds:maxsca;
wname = 'morl';
SIG = {Y,dt};
WAV = {wname,[]};

% Compute the CWT using cwtft with linear scales
cwtS = cwtft(SIG,'scales',scales,'wavelet',WAV);
% Compute inverse CWT using linear scales
Yrec = icwtlin(cwtS,'Signal',Y,'plot');
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Reconstruct an approximation to a noisy Doppler signal based on
thresholded coefficients. Use the universal threshold. Assume the
sampling period is 0.05 seconds.

load noisdopp;
Y = noisdopp;
N = length(Y);

% Define parameters before analysis
% Assume sampling period is 0.05
dt = 0.05;
maxsca = 100; s0 = 2*dt; ds = 4*dt;
scales = s0:ds:maxsca;
wname = 'morl';
SIG = {Y,dt};
WAV = {wname,[]};

% Compute CWT
cwtS = cwtft(SIG,'scales',scales,'wavelet',WAV,'plot');

% Select subset of coefficients
cwtS1 = cwtS;
Hfreq = cwtS.cfs(1:10,:);
% Set threshold
thr = sqrt(2*log(N))*median(abs(Hfreq(:)))/0.6745;
newCFS = cwtS.cfs;
% Set coefficients smaller than threshold in absolute value to 0
newCFS(abs(newCFS)<thr) = 0;
cwtS1.cfs = newCFS;

% Reconstruction from the modified structure
YRDen = icwtlin(cwtS1,'signal',Y,'plot');

Enable the Reconstructed Signal On/Off radio button in the
bottom-left corner.
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Algorithms See [4] for a description of the inverse CWT algorithm for linearly
spaced scales. The icwtlin function uses heuristic scaling factors for
the analyzing wavelets. These scaling factors can result in significant
differences in the amplitude scaling of the reconstructed signal.

References [1] Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society
for Industrial and Applied Mathematics (SIAM), 1992.

[2] Farge, M. “Wavelet Transforms and Their Application to
Turbulence”, Ann. Rev. Fluid. Mech., 1992, 24, 395–457.

[3] Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA:
Academic Press, 1998.

[4] Sun,W. “Convergence of Morlet’s Reconstruction Formula”, preprint,
2010.
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[5] Torrence, C. and G.P. Compo. “A Practical Guide to Wavelet
Analysis”, Bull. Am. Meteorol. Soc., 79, 61–78, 1998.

Alternatives • icwtft— Computes the inverse for the CWT obtained using cwtft
with logarithmically spaced scales. If you use linearly spaced scales
in cwtft, or you obtain the CWT with cwt, use icwtlin to compute
the inverse.

See Also icwtft | cwtft | cwt

How To • “Continuous Wavelet Transform”

• “DFT-Based Continuous Wavelet Transform”

• “Inverse Continuous Wavelet Transform”
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Purpose Inverse dual-tree and double-density 1-D wavelet transform

Syntax xrec = idddtree(wt)

Description xrec = idddtree(wt) returns the inverse wavelet transform of the
wavelet decomposition (analysis filter bank), wt. wt is the output of
dddtree.

Input
Arguments

wt - Wavelet transform
structure

Wavelet transform, returned as a structure from dddtree with these
fields:

type - Type of wavelet decomposition (filter bank)
'dwt' | 'ddt' | 'cplxdt' | 'cplxdddt'

Type of wavelet decomposition (filter bank), specified as one of 'dwt',
'ddt', 'cplxdt', or 'cplxdddt'. The type,'dwt', gives a critically
sampled discrete wavelet transform. The other types are oversampled
wavelet transforms. 'ddt' is a double-density wavelet transform,
'cplxdt' is a dual-tree complex wavelet transform, and 'cplxdddt' is
a double-density dual-tree complex wavelet transform.

level - Level of wavelet decomposition
positive integer

Level of wavelet decomposition, specified as a positive integer.

filters - Decomposition (analysis) and reconstruction (synthesis)
filters
structure

Decomposition (analysis) and reconstruction (synthesis) filters, specified
as a structure with these fields:

Fdf - First-stage analysis filters
matrix | cell array
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First-stage analysis filters, specified as an N-by-2 or N-by-3 matrix for
single-tree wavelet transforms, or a cell array of two N-by-2 or N-by-3
matrices for dual-tree wavelet transforms. The matrices are N-by-3
for the double-density wavelet transforms. For an N-by-2 matrix, the
first column of the matrix is the scaling (lowpass) filter and the second
column is the wavelet (highpass) filter. For an N-by-3 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second and
third columns are the wavelet (highpass) filters. For the dual-tree
transforms, each element of the cell array contains the first-stage
analysis filters for the corresponding tree.

Df - Analysis filters for levels > 1
matrix | cell array

Analysis filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for
single-tree wavelet transforms, or a cell array of two N-by-2 or N-by-3
matrices for dual-tree wavelet transforms. The matrices are N-by-3
for the double-density wavelet transforms. For an N-by-2 matrix, the
first column of the matrix is the scaling (lowpass) filter and the second
column is the wavelet (highpass) filter. For an N-by-3 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second and
third columns are the wavelet (highpass) filters. For the dual-tree
transforms, each element of the cell array contains the analysis filters
for the corresponding tree.

Frf - First-level reconstruction filters
matrix | cell array

First-level reconstruction filters, specified as an N-by-2 or N-by-3
matrix for single-tree wavelet transforms, or a cell array of two N-by-2
or N-by-3 matrices for dual-tree wavelet transforms. The matrices
are N-by-3 for the double-density wavelet transforms. For an N-by-2
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second column is the wavelet (highpass) filter. For an N-by-3
matrix, the first column of the matrix is the scaling (lowpass) filter and
the second and third columns are the wavelet (highpass) filters. For
the dual-tree transforms, each element of the cell array contains the
first-stage synthesis filters for the corresponding tree.
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Rf - Reconstruction filters for levels > 1
matrix | cell array

Reconstruction filters for levels > 1, specified as an N-by-2 or N-by-3
matrix for single-tree wavelet transforms, or a cell array of two N-by-2
or N-by-3 matrices for dual-tree wavelet transforms. The matrices
are N-by-3 for the double-density wavelet transforms. For an N-by-2
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second column is the wavelet (highpass) filter. For an N-by-3
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second and third columns are the wavelet (highpass) filters.
For the dual-tree transforms, each element of the cell array contains
the synthesis filters for the corresponding tree.

cfs - Wavelet transform coefficients
cell array of matrices

Wavelet transform coefficients, specified as a 1-by-(level+1) cell array
of matrices. The size and structure of the matrix elements of the cell
array depend on the type of wavelet transform as follows:

• 'dwt' — cfs{j}

- j = 1,2,..., level is the level.

- cfs{level+1} are the lowpass, or scaling, coefficients.

• 'ddt' — cfs{j}(:,:,k)

- j = 1,2,..., level is the level.

- k = 1,2 is the wavelet filter.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdt' — cfs{j}(:,:,m)

- j = 1,2,..., level is the level.

- m = 1,2 are the real and imaginary parts.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdddt' — cfs{j}(:,:,k,m)
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- j = 1,2,..., level is the level.

- k = 1,2 is the wavelet filter.

- m = 1,2 are the real and imaginary parts.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

Output
Arguments

xrec - Synthesized 1-D signal
vector

Synthesized 1-D signal, returned as a vector. The row or column
orientation of xrec depends on the row or column orientation of the
1-D signal input to dddtree.

Data Types
double

Examples Perfect Reconstruction Using the Dual-Tree Double-Density
Wavelet Filter Bank

Demonstrate perfect reconstruction of a signal using a dual-tree
double-density wavelet transform.

Load the noisy Doppler signal. Obtain the dual-tree double-density
wavelet transform down to level 5. Invert the transform and
demonstrate perfect reconstruction.

load noisdopp;
wt = dddtree('cplxdddt',noisdopp,5,'FSdoubledualfilt','doubledualfilt');
xrec = idddtree(wt);
max(abs(noisdopp-xrec))

See Also dddtree | dddtreecfs | plotdt

Related
Examples

• “Analytic Wavelets Using the Dual-Tree Wavelet Transform”

Concepts • “Critically Sampled and Oversampled Wavelet Filter Banks”
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Purpose Inverse dual-tree and double-density 2-D wavelet transform

Syntax xrec = idddtree2(wt)

Description xrec = idddtree2(wt) returns the inverse wavelet transform of
the 2-D decomposition (analysis filter bank), wt. wt is the output of
dddtree2.

Input
Arguments

wt - Wavelet transform
structure

Wavelet transform, returned as a structure from dddtree2 with these
fields:

type - Type of wavelet decomposition (filter bank)
'dwt' | 'ddt' | 'realdt' | 'cplxdt' | 'realdddt' | 'cplxdddt'

Type of wavelet decomposition (filter bank), specified as one of 'dwt',
'ddt', 'realdt', 'cplxdt', 'realdddt', or 'cplxdddt'. 'dwt' is
the critically sampled DWT. 'ddt' produces a double-density wavelet
transform with one scaling and two wavelet filters for both row and
column filtering. 'realdt' and 'cplxdt' produce oriented dual-tree
wavelet transforms consisting of two and four separable wavelet
transforms. 'realdddt' and 'cplxdddt' produce double-density
dual-tree wavelet transforms consisting of two and four separable
wavelet transforms.

level - Level of the wavelet decomposition
positive integer

Level of the wavelet decomposition, specified as a positive integer.

filters - Decomposition (analysis) and reconstruction (synthesis)
filters
structure

Decomposition (analysis) and reconstruction (synthesis) filters, specified
as a structure with these fields:
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Fdf - First-stage analysis filters
matrix | cell array

First-stage analysis filters, specified as an N-by-2 or N-by-3 matrix
for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2
or N-by-3 matrices for dual-tree wavelet transforms. The matrices
are N-by-3 for the double-density wavelet transforms. For an N-by-2
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second column is the wavelet (highpass) filter. For an N-by-3
matrix, the first column of the matrix is the scaling (lowpass) filter and
the second and third columns are the wavelet (highpass) filters. For
the dual-tree transforms, each element of the cell array contains the
first-stage analysis filters for the corresponding tree.

Df - Analysis filters for levels > 1
matrix | cell array

Analysis filters for levels > 1, specified as an N-by-2 or N-by-3 matrix
for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2
or N-by-3 matrices for dual-tree wavelet transforms. The matrices
are N-by-3 for the double-density wavelet transforms. For an N-by-2
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second column is the wavelet (highpass) filter. For an N-by-3
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second and third columns are the wavelet (highpass) filters.
For the dual-tree transforms, each element of the cell array contains
the analysis filters for the corresponding tree.

Frf - First-level reconstruction filters
matrix | cell array

First-level reconstruction filters, specified as an N-by-2 or N-by-3
matrix for single-tree wavelet transforms, or a 1-by-2 cell array of
two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The
matrices are N-by-3 for the double-density wavelet transforms. For an
N-by-2 matrix, the first column of the matrix is the scaling (lowpass)
filter and the second column is the wavelet (highpass) filter. For an
N-by-3 matrix, the first column of the matrix is the scaling (lowpass)
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filter and the second and third columns are the wavelet (highpass)
filters. For the dual-tree transforms, each element of the cell array
contains the first-stage synthesis filters for the corresponding tree.

Rf - Reconstruction filters for levels > 1
matrix | cell array

Reconstruction filters for levels > 1, specified as an N-by-2 or N-by-3
matrix for single-tree wavelet transforms, or a 1-by-2 cell array of
two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The
matrices are N-by-3 for the double-density wavelet transforms. For an
N-by-2 matrix, the first column of the matrix is the scaling (lowpass)
filter and the second column is the wavelet (highpass) filter. For an
N-by-3 matrix, the first column of the matrix is the scaling (lowpass)
filter and the second and third columns are the wavelet (highpass)
filters. For the dual-tree transforms, each element of the cell array
contains the first-stage analysis filters for the corresponding tree.

cfs - Wavelet transform coefficients
cell array of matrices

Wavelet transform coefficients, specified as a 1-by-(level+1) cell array
of matrices. The size and structure of the matrix elements of the cell
array depend on the type of wavelet transform as follows:

• 'dwt' — cfs{j}(:,:,d)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'ddt' — cfs{j}(:,:,d)

- j = 1,2,..., level is the level.

- d = 1,2,3,4,5,6,7,8 is the orientation.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'realddt' — cfs{j}(:,:,d,k)
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- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- k = 1,2 is the wavelet transform tree.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdt' — cfs{j}(:,:,d,k,m)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- k = 1,2 is the wavelet transform tree.

- m = 1,2 are the real and imaginary parts.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients..

• 'realdddt' — cfs{j}(:,:,d,k)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- k = 1,2 is the wavelet transform tree.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdddt' — cfs{j}(:,:,d,k,m)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- k = 1,2 is the wavelet transform tree.

- m = 1,2 are the real and imaginary parts.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

Output
Arguments

xrec - Synthesized 2-D image
matrix

Synthesized image, returned as a matrix.
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Data Types
double

Examples Perfect Reconstruction Using the Complex Oriented Dual-Tree
Wavelet Filter Bank

Demonstrate perfect reconstruction of an image using a complex
oriented dual-tree wavelet transform.

Load the image and obtain the complex oriented dual-tree wavelet
transform down to level 5 using dddtree2. Reconstruct the image using
idddtree2 and demonstrate perfect reconstruction.

load woman;
wt = dddtree2('cplxdt',X,5,'dtf2');
xrec = idddtree2(wt);
max(max(abs(X-xrec)))

See Also dddtree2 | dddtreecfs

Related
Examples

• “Analytic Wavelets Using the Dual-Tree Wavelet Transform”

Concepts • “Critically Sampled and Oversampled Wavelet Filter Banks”
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Purpose Single-level inverse discrete 1-D wavelet transform

Syntax X = idwt(cA,cD,'wname')
X = idwt(cA,cD,Lo_R,Hi_R)
X = idwt(cA,cD,'wname',L)
X = idwt(cA,cD,Lo_R,Hi_R,L)
idwt(cA,cD,'wname')
X = idwt(...,'mode',MODE)
X = idwt(cA,[],...)
X = idwt([],cD,...)

Description The idwt command performs a single-level one-dimensional wavelet
reconstruction with respect to either a particular wavelet ('wname', see
wfilters for more information) or particular wavelet reconstruction
filters (Lo_R and Hi_R) that you specify.

X = idwt(cA,cD,'wname') returns the single-level reconstructed
approximation coefficients vector X based on approximation and detail
coefficients vectors cA and cD, and using the wavelet 'wname'.

X = idwt(cA,cD,Lo_R,Hi_R) reconstructs as above using filters that
you specify.

• Lo_R is the reconstruction low-pass filter.

• Hi_R is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length.

Let la be the length of cA (which also equals the length of cD) and lf
the length of the filters Lo_R and Hi_R; then length(X) = LX where LX
= 2*la if the DWT extension mode is set to periodization. For the other
extension modes LX = 2*la-lf+2.

For more information about the different Discrete Wavelet Transform
extension modes, see dwtmode.

X = idwt(cA,cD,'wname',L) or X = idwt(cA,cD,Lo_R,Hi_R,L)
returns the length-L central portion of the result obtained using
idwt(cA,cD,'wname'). L must be less than LX.
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X = idwt(...,'mode',MODE) computes the wavelet reconstruction
using the specified extension mode MODE.

X = idwt(cA,[],...) returns the single-level reconstructed
approximation coefficients vector X based on approximation coefficients
vector cA.

X = idwt([],cD,...) returns the single-level reconstructed detail
coefficients vector X based on detail coefficients vector cD.

Examples Inverse DWT Using Orthogonal Wavelet

Demonstrate perfect reconstruction using dwt and idwt with an
orthonormal wavelet.

load noisdopp;
[A,D] = dwt(noisdopp,'sym4');
x = idwt(A,D,'sym4');
max(abs(noisdopp-x))

Inverse DWT Using Biorthgonal Wavelet

Demonstrate perfect reconstruction using dwt and idwt with a
biorthogonal wavelet.

load noisdopp;
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('bior3.5');
[A,D] = dwt(noisdopp,Lo_D,Hi_D);
x = idwt(A,D,Lo_R,Hi_R);
max(abs(noisdopp-x))

Algorithms Starting from the approximation and detail coefficients at level j, cAj
and cDj, the inverse discrete wavelet transform reconstructs cAj−1,
inverting the decomposition step by inserting zeros and convolving the
results with the reconstruction filters.
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References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference
series in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition:
the wavelet representation,” IEEE Pattern Anal. and Machine Intell.,
vol. 11, no. 7, pp. 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed.
(English translation: Wavelets and operators, Cambridge Univ. Press.
1993.)

See Also dwt | dwtmode | upwlev
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Purpose Single-level inverse discrete 2-D wavelet transform

Syntax X = idwt2(cA,cH,cV,cD,'wname')
X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R)
X = idwt2(cA,cH,cV,cD,'wname',S)
X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)
idwt2(cA,cH,cV,cD,'wname')
X = idwt2(...,'mode',MODE)
X = idwt2(cA,[],[],[],...)
X = idwt2([],cH,[],[],...)

Description The idwt2 command performs a single-level two-dimensional wavelet
reconstruction with respect to either a particular wavelet ('wname', see
wfilters for more information) or particular wavelet reconstruction
filters (Lo_R and Hi_R) that you specify.

X = idwt2(cA,cH,cV,cD,'wname') uses the wavelet 'wname' to
compute the single-level reconstructed approximation coefficients
matrix X, based on approximation matrix cA and details matrices cH,cV,
and cD (horizontal, vertical, and diagonal, respectively).

X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R) reconstructs as above, using
filters that you specify.

• Lo_R is the reconstruction low-pass filter.

• Hi_R is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length.

Let sa = size(cA) = size(cH) = size(cV) = size(cD) and lf the
length of the filters; then size(X) = SX, where SX = 2* SA, if the DWT
extension mode is set to periodization. For the other extension modes,
SX = 2*size(cA)-lf+2.

For more information about the different Discrete Wavelet Transform
extension modes, see dwtmode.

X = idwt2(cA,cH,cV,cD,'wname',S) and X =
idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S) return the size-S central portion of
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the result obtained using the syntax idwt2(cA,cH,cV,cD,'wname').
S must be less than SX.

X = idwt2(...,'mode',MODE) computes the wavelet reconstruction
using the extension mode MODE that you specify.

X = idwt2(cA,[],[],[],...) returns the single-level reconstructed
approximation coefficients matrix X based on approximation coefficients
matrix cA.

X = idwt2([],cH,[],[],...) returns the single-level reconstructed
detail coefficients matrix X based on horizontal detail coefficients
matrix cH.

The same result holds for X = idwt2([],[],cV,[],...) and
X = idwt2([],[],[],cD,...), based on vertical and diagonal details.

More generally, X = idwt2(AA,HH,VV,DD,...) returns the single-level
reconstructed matrix X, where AA can be cA or [], and so on.

idwt2 is the inverse function of dwt2 in the sense that the abstract
statement
idwt2(dwt2(X,'wname'),'wname') would give back X.

Tips If cA,cH,cV,cD are obtained from an indexed image analysis or a
truecolor image analysis, they are m-by-nmatrices or m-by-n-by-3 arrays,
respectively.

For more information on image formats, see the image and imfinfo
reference pages.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image.
load woman;

% X contains the loaded image.
sX = size(X);

% Perform single-level decomposition
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% of X using db4.
[cA1,cH1,cV1,cD1] = dwt2(X,'db4');

% Invert directly decomposition of X
% using coefficients at level 1.
A0 = idwt2(cA1,cH1,cV1,cD1,'db4',sX);

% Check for perfect reconstruction.
max(max(abs(X-A0)))
ans =

3.4176e-10

Algorithms
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See Also dwt2 | dwtmode | upwlev2
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Purpose Single-level inverse discrete 3-D wavelet transform

Syntax X = idwt3(WT)
C = idwt3(WT,TYPE)

Description The idwt3 command performs a single-level three-dimensional wavelet
reconstruction starting from a single-level three-dimensional wavelet
decomposition.

X = idwt3(WT) computes the single-level reconstructed 3-D array X,
based on the three-dimensional wavelet decomposition stored in the WT
structure. This structure contains the following fields.

sizeINI Size of the three-dimensional array X.

mode Name of the wavelet transform extension mode.

filters Structure with 4 fields, LoD, HiD, LoR, HiR, which
contain the filters used for DWT.

dec 2 x 2 x 2 cell array containing the coefficients of the
decomposition.

dec{i,j,k}, i,j,k = 1 or 2 contains the coefficients
obtained by low-pass filtering (for i or j or k = 1)
or high-pass filtering (for i or j or k = 2).

C = idwt3(WT,TYPE) computes the single-level reconstructed
component based on the three-dimensional wavelet decomposition.
Valid values for TYPE are:

• A group of three characters 'xyz', one per direction, with 'x','y'
and 'z' selected in the set {'a','d','l','h'} or in the corresponding
uppercase set {'A','D','L','H'}), where 'A' (or 'L') specifies
low-pass filter and 'D' (or 'H') specifies high-pass filter.

• The char 'd' (or 'h' or 'D' or 'H') which specifies the sum of all the
components different from the low-pass component.
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Examples % Define original 3D data.
X = reshape(1:64,4,4,4);

% Decompose X using db1.
wt = dwt3(X,'db1');

% Reconstruct X from coefficients.
XR = idwt3(wt);

% Compute reconstructed approximation, i.e. the
% low-pass component.
A = idwt3(wt,'aaa');

% Compute the sum of all the components different
% from the low-pass component.
D = idwt3(wt,'d');

% Reconstruct the component associated with low-pass in the
% X and Z directions and high-pass in the Y direction.
ADA = idwt3(wt,'ada');

See Also dwt3 | wavedec3 | waverec3
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Purpose Inverse 1-D lifting wavelet transform

Syntax X = ilwt(AD_In_Place,W)
X = ilwt(CA,CD,W)
X = ilwt(AD_In_Place,W,LEVEL)
X = ILWT(CA,CD,W,LEVEL)
X = ilwt(AD_In_Place,W,LEVEL,'typeDEC',typeDEC)
X = ilwt(CA,CD,W,LEVEL,'typeDEC',typeDEC)

Description ilwt performs a 1-D lifting wavelet reconstruction with respect to a
particular lifted wavelet that you specify.

X = ilwt(AD_In_Place,W) computes the reconstructed vector X using
the approximation and detail coefficients vector AD_In_Place obtained
by a lifting wavelet reconstruction. W is a lifted wavelet name (see
liftwave).

X = ilwt(CA,CD,W) computes the reconstructed vector X using the
approximation coefficients vector CA and detail coefficients vector CD
obtained by a lifting wavelet reconstruction.

X = ilwt(AD_In_Place,W,LEVEL) or X = ILWT(CA,CD,W,LEVEL)
computes the lifting wavelet reconstruction, at level LEVEL.

X = ilwt(AD_In_Place,W,LEVEL,'typeDEC',typeDEC) or X =
ilwt(CA,CD,W,LEVEL,'typeDEC',typeDEC) with typeDEC = 'w' or
'wp' computes the wavelet or the wavelet packet decomposition using
lifting, at level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting
scheme LS: X = ilwt(...,LS,...) instead of X = ILWT(...,W,...).

For more information about lifting schemes, see lsinfo.

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

% Add a primal ELS to the lifting scheme.
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els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);

% Perform LWT at level 1 of a simple signal.
x = 1:8;
[cA,cD] = lwt(x,lsnew);

% Perform integer LWT of the same signal.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cDint] = lwt(x,lsnewInt);

% Invert the two transforms.
xRec = ilwt(cA,cD,lsnew);
err = max(max(abs(x-xRec)))

err =

4.4409e-016

xRecInt = ilwt(cAint,cDint,lsnewInt);
errInt = max(max(abs(x-xRecInt)))

errInt =

0

See Also lwt

1-218



ilwt2

Purpose Inverse 2-D lifting wavelet transform

Syntax X = ilwt2(AD_In_Place,W)
X = ilwt2(CA,CH,CV,CD,W)
X = ilwt2(AD_In_Place,W,LEVEL)
X = ILWT2(CA,CH,CV,CD,W,LEVEL)
X = ilwt2(AD_In_Place,W,LEVEL,'typeDEC',typeDEC)
X = ilwt2(CA,CH,CV,CD,W,LEVEL,'typeDEC',typeDEC)

Description ilwt2 performs a 2-D lifting wavelet reconstruction with respect to a
particular lifted wavelet that you specify.

X = ilwt2(AD_In_Place,W) computes the reconstructed matrix X
using the approximation and detail coefficients matrix AD_In_Place,
obtained by a lifting wavelet decomposition. W is a lifted wavelet name
(see liftwave).

X = ilwt2(CA,CH,CV,CD,W) computes the reconstructed matrix X using
the approximation coefficients vector CA and detail coefficients vectors
CH, CV, and CD obtained by a lifting wavelet decomposition.

X = ilwt2(AD_In_Place,W,LEVEL) or X =
ILWT2(CA,CH,CV,CD,W,LEVEL) computes the lifting wavelet
reconstruction, at level LEVEL.

X = ilwt2(AD_In_Place,W,LEVEL,'typeDEC',typeDEC) or X =
ilwt2(CA,CH,CV,CD,W,LEVEL,'typeDEC',typeDEC) with typeDEC =
'w' or 'wp' computes the wavelet or the wavelet packet decomposition
using lifting, at level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting
scheme LS: X = ilwt2(...,LS,...) instead of X = ilwt2(...,W,...).

For more information about lifting schemes, see lsinfo.

Tips If AD_In_Place or cA,cH,cV,cD are obtained from an indexed image
analysis or a truecolor image analysis, they are m-by-n matrices or
m-by-n-by-3 arrays, respectively.
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For more information on image formats, see the image and imfinfo
reference pages.

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);

% Perform LWT at level 1 of a simple image.
x = reshape(1:16,4,4);
[cA,cH,cV,cD] = lwt2(x,lsnew);

% Perform integer LWT of the same image.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cHint,cVint,cDint] = lwt2(x,lsnewInt);

% Invert the two transforms.
xRec = ilwt2(cA,cH,cV,cD,lsnew);
err = max(max(abs(x-xRec)))

err =

0

xRecInt = ilwt2(cAint,cHint,cVint,cDint,lsnewInt);
errInt = max(max(abs(x-xRecInt)))

errInt =

0

See Also lwt2
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Purpose Node index to node depth-position

Syntax [D,P] = ind2depo(ORD,[D P])

Description ind2depo is a tree-management utility.

For a tree of order ORD, [D,P] = ind2depo(ORD,N) computes the depths
D and the positions P (at these depths D) for the nodes with indices N.

The nodes are numbered from left to right and from top to bottom. The
root index is 0.

N must be a column vector of integers (N 0).

Note that [D,P] = ind2depo(ORD,[D P]).

Examples % Create initial tree.
ord = 2; t = ntree(ord,3); % Binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

% List t nodes (index).
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aln_ind = allnodes(t)

aln_ind =
0
1
2
3
4
5
6
7
8

13
14

% Switch from index to Depth_Position.
[depth,pos] = ind2depo(ord,aln_ind);
aln_depo = [depth,pos]

aln_depo =
0 0
1 0
1 1
2 0
2 1
2 2
2 3
3 0
3 1
3 6
3 7

See Also depo2ind
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Purpose Inverse nondecimated 1-D wavelet transform

Syntax C = indwt(W,TYPE,N)
C = indwt(W,TYPE)
C = indwt(W,TYPE,N)
X = indwt(W)
X = indwt(W,'a',0)
X = indwt(W,'ca',0)

Description indwt performs a multilevel nondecimated 1-D wavelet reconstruction
starting from a multilevel nondecimated 1-D wavelet decomposition.
You can also use indwt to extract coefficients from a multilevel
nondecimated 1-D wavelet decomposition.

C = indwt(W,TYPE,N) computes the reconstructed components at level
N of a non-decimated 1-D wavelet decomposition. N must be a positive
integer less or equal to the level of the decomposition. The valid value
for TYPE is a char:

• 'a' (or 'l' or 'A' or 'L'), which gives the low-pass component

• 'd' (or 'h' or 'D' or 'H'), which gives the high-pass component

where 'A' (or 'L') specifies low-pass filter and 'D' (or 'H') specifies
high-pass filter.

For extraction, the valid values for TYPE are the same but prefixed by
'c' or 'C'.

See ndwt for more information about the decomposition structure W.

C = indwt(W,TYPE) is equivalent to C = indwt(W,TYPE,N) with N
equal to the level of the decomposition.

X = indwt(W), X = indwt(W,'a',0) or X = indwt(W,'ca',0)
reconstructs the vector X based on the nondecimated 1-D wavelet
decomposition structure W.

Examples % Load the signal
load noissin;
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x = noissin;

% Decompose X at level 3 using db1.
W1 = ndwt(x,3,'db1');

% Reconstruct the original signal from the
% decomposition W1 structure.
a0 = indwt(W1,'a',0);

% Check for perfect reconstruction.
err = max(abs(x(:)-a0(:)))

err =

8.8818e-016

% Decompose X at level 3 using db3 and periodic extension mode.
W2 = ndwt(x,3,'db3','mode','per');

% Reconstruct approximation at level 2.
a2 = indwt(W2,'a',2);

% Reconstruct detail at level 2.
d2 = indwt(W2,'d',2);

% Reconstruct detail at level 1.
d1 = indwt(W2,'d',1);

See Also dwtmode | ndwt | waveinfo
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Purpose Inverse nondecimated 2-D wavelet transform

Syntax C = indwt2(W,TYPE,N)
C = indwt2(W,TYPE)
C = indwt2(W,TYPE,N)
X = indwt2(W)
X = indwt2(W,'a',0)
X = indwt2(W,'ca',0)

Description indwt2 performs a multilevel nondecimated 2-D wavelet reconstruction
starting from a multilevel nondecimated 2-D wavelet decomposition.
You can also use indwt2 to extract coefficients from a multilevel
nondecimated 2-D wavelet decomposition.

C = indwt2(W,TYPE,N) computes the reconstructed or the extracted
components at level N of a nondecimated 2-D wavelet decomposition. N
must be a positive integer less or equal to the level of the decomposition.
The valid values for TYPE are:

• A group of 2 chars 'xy', one per direction, with 'x' and 'y' in
the set {'a','d','l','h'} or in the corresponding uppercase set
{'A','D','L','H'}), where 'A' (or 'L') stands for low-pass filter
and 'D' (or 'H') stands for high-pass.

• The char 'd' (or 'h' or 'D' or 'H') specifies the sum of the
components different from the low-pass one.

For extraction, the valid values for TYPE are the same as above prefixed
by 'c' or 'C'.

See ndwt2 for more information about the decomposition structure W.

C = indwt2(W,TYPE) is equivalent to C = indwt2(W,TYPE,N) with N
equal to the level of the decomposition.

X = indwt2(W), X = indwt2(W,'a',0) or X = indwt2(W,'ca',0)
reconstructs the matrix X based on the nondecimated 2-D wavelet
decomposition structure W.
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Examples % Load original image.
load noiswom

% Decompose X at level 3 using db1.
W = ndwt2(X,3,'db1');

% Reconstruct approximations at levels 1 to 3.
A = cell(1,3);
for k=1:3, A{k} = indwt2(W,'aa',k); end

% Plot original image at the top and approximations
% at the bottom.
figure; colormap(pink(255))
subplot(2,3,2);image(X);
for k=1:3

subplot(2,3,k+3);image(A{k});
end
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% Reconstruct detail at level 1.
D = indwt2(W,'d',1);

% Display reconstructed detail at level 1.
figure; colormap(pink(255));imagesc(abs(D))
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% Compute reconstructed approximation and detail at level 1.
A1 = indwt2(W,'aa',1);
D1 = indwt2(W,'d',1);

% Check that X = A1 + D1.
E1 = X-A1-D1;
err1 = max(abs(E1(:)))

err1 =

2.6645e-013

% Compute reconstructed approximation and detail at level 2.
A2 = indwt2(W,'aa',2);
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D2 = indwt2(W,'d',2);

% Check that X = A2 + D2.
E2 = X-A2-D2;
err2 = max(abs(E2(:)))

err2 =

2.5668e-013

See Also dwtmode | ndwt2 | waveinfo
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Purpose Integrate wavelet function psi (ψ)

Syntax [INTEG,XVAL] = intwave('wname',PREC)
[INTDEC,XVAL,INTREC] = intwave('wname',PREC)
[INTEG,XVAL] = intwave('wname',PREC)
[INTEG,XVAL] = intwave('wname',PREC,0)
[INTEG,XVAL] = intwave('wname')
[INTEG,XVAL] = intwave('wname',8)
intwave('wname',IN2,IN3), PREC = max(IN2,IN3)
intwave('wname',0)
intwave('wname',8,IN3)
intwave('wname')
intwave('wname',8)

Description [INTEG,XVAL] = intwave('wname',PREC) computes the integral,

INTEG, of the wavelet function ψ (from −∞ to XVAL values):
for x in XVAL.

The function ψ is approximated on the 2PREC points grid XVAL where
PREC is a positive integer. 'wname' is a string containing the name of
the wavelet ψ (see wfilters for more information).

Output argument INTEG is a real or complex vector depending on the
wavelet type.

For biorthogonal wavelets,

[INTDEC,XVAL,INTREC] = intwave('wname',PREC) computes the
integrals, INTDEC and INTREC, of the wavelet decomposition function
ψdec and the wavelet reconstruction function ψrec.

[INTEG,XVAL] = intwave('wname',PREC) is equivalent to
[INTEG,XVAL] = intwave('wname',PREC,0).

[INTEG,XVAL] = intwave('wname') is equivalent to [INTEG,XVAL]
= intwave('wname',8).

When used with three arguments intwave('wname',IN2,IN3), PREC
= max(IN2,IN3) and plots are given.

1-230



intwave

When IN2 is equal to the special value 0, intwave('wname',0) is
equivalent to intwave('wname',8,IN3).

intwave('wname') is equivalent to intwave('wname',8).

intwave is used only for continuous analysis (see cwt for more
information).

Examples % Set wavelet name.
wname = 'db4';

% Plot wavelet function.
[phi,psi,xval] = wavefun(wname,7);
subplot(211); plot(xval,psi); title('Wavelet');

% Compute and plot wavelet integrals approximations
% on a dyadic grid.
[integ,xval] = intwave(wname,7);
subplot(212); plot(xval,integ);
title(['Wavelet integrals over [-Inf x] ' ...

'for each value of xval']);
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Algorithms First, the wavelet function is approximated on a grid of 2PREC points
using wavefun. A piecewise constant interpolation is used to compute
the integrals using cumsum.

See Also wavefun
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Purpose Existing node test

Syntax R = isnode(T,N)

Description isnode is a tree-management utility.

R = isnode(T,N) returns 1’s for nodes N, which exist in the tree T,
and 0’s for others.

N can be a column vector containing the indices of nodes or a matrix,
that contains the depths and positions of nodes.

In the last case, N(i,1) is the depth of the i-th node and N(i,2) is the
position of the i-th node.

The nodes are numbered from left to right and from top to bottom. The
root index is 0.

Examples % Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)

% Change Node Label from Depth_Position to Index
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% (see the plot function).

% Check node index.
isnode(t,[1;3;25])

ans =
1
1
0

% Check node Depth_Position.
isnode(t,[1 0;3 1;4 5])

ans =
1
1
0

See Also istnode | wtreemgr
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Purpose Terminal nodes indices test

Syntax R = istnode(T,N)

Description istnode is a tree-management utility.

R = istnode(T,N) returns ranks (in left to right terminal nodes
ordering) for terminal nodes N belonging to the tree T, and 0’s for others.

N can be a column vector containing the indices of nodes or a matrix
that contains the depths and positions of nodes.

In the last case, N(i,1) is the depth of the i-th node and N(i,2) is the
position of the i-th node.

The nodes are numbered from left to right and from top to bottom. The
root index is 0.

Examples % Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)

% Change Node Label from Depth_Position to Inde
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% (see the plot function)x.

% Find terminal nodes and return indices for terminal
% nodes in the tree.
istnode(t,[14])
ans =

6

istnode(t,[15])
ans =

0

istnode(t,[1;7;14;25])
ans =

0
1
6
0

istnode(t,[1 0;3 1;4 5])
ans =

0
2
0
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See Also isnode | wtreemgr

1-237



iswt

Purpose Inverse discrete stationary wavelet transform 1-D

Syntax X = iswt(SWC,'wname')
X = iswt(SWA,SWD,'wname')
X = iswt(SWA(end,:),SWD,'wname')
X = iswt(SWC,Lo_R,Hi_R)
X = iswt(SWA,SWD,Lo_R,Hi_R)
X = iswt(SWA(end,:),SWD,Lo_R,Hi_R)

Description iswt performs a multilevel 1-D stationary wavelet reconstruction using
either a specific orthogonal wavelet ('wname', see wfilters for more
information) or specific reconstruction filters (Lo_R and Hi_R).

X = iswt(SWC,'wname') or X = iswt(SWA,SWD,'wname') or X =
iswt(SWA(end,:),SWD,'wname') reconstructs the signal X based on
the multilevel stationary wavelet decomposition structure SWC or
[SWA,SWD] (see swt for more information).

X = iswt(SWC,Lo_R,Hi_R) or X = iswt(SWA,SWD,Lo_R,Hi_R) or X =
iswt(SWA(end,:),SWD,Lo_R,Hi_R) reconstruct as above, using filters
that you specify.

• Lo_R is the reconstruction low-pass filter.

• Hi_R is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length.

Examples % Load original 1D signal.
load noisbloc; s = noisbloc;

% Perform SWT decomposition at level 3 of s using db1.
swc = swt(s,3,'db1');
% Second usage.
[swa,swd] = swt(s,3,'db1');

% Reconstruct s from the stationary wavelet
% decomposition structure swc.
a0 = iswt(swc,'db1');
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% Second usage.
a0bis = iswt(swa,swd,'db1');

% Check for perfect reconstruction.
err = norm(s-a0)
err =

9.6566e-014

errbis = norm(s-a0bis)
errbis =

9.6566e-014

References Nason, G.P.; B.W. Silverman (1995), “The stationary wavelet transform
and some statistical applications,” Lecture Notes in Statistics, 103, pp.
281–299.

Coifman, R.R.; Donoho D.L. (1995), “Translation invariant de-noising,”
Lecture Notes in Statistics, 103, pp 125–150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), “Time-invariant
orthonormal wavelet representations,” IEEE Trans. Sign. Proc., vol.
44, 8, pp. 1964–1970.

See Also idwt | swt | waverec
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Purpose Inverse discrete stationary wavelet transform 2-D

Syntax X = iswt2(SWC,'wname')
X = iswt2(A,H,V,D,wname)
X = iswt2(A(:,:,end),H,V,D,'wname')
X = iswt2(SWC,Lo_R,Hi_R)
X = iswt2(A,H,V,D,Lo_R,Hi_R)
X = iswt2(A(:,:,end),H,V,D,Lo_R,Hi_R)

Description iswt2 performs a multilevel 2-D stationary wavelet reconstruction
using either a specific orthogonal wavelet ('wname' see wfilters for
more information) or specific reconstruction filters (Lo_R and Hi_R).

X = iswt2(SWC,'wname') or X = iswt2(A,H,V,D,wname) or X =
iswt2(A(:,:,end),H,V,D,'wname') reconstructs the signal X, based
on the multilevel stationary wavelet decomposition structure SWC or
[A,H,V,D] (see swt2).

X = iswt2(SWC,Lo_R,Hi_R) or X = iswt2(A,H,V,D,Lo_R,Hi_R) or
X = iswt2(A(:,:,end),H,V,D,Lo_R,Hi_R) reconstructs as in the
previous syntax, using filters that you specify:

• Lo_R is the reconstruction low-pass filter.

• Hi_R is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length.

Tips If SWC or (cA,cH,cV,cD) are obtained from an indexed image analysis or
a truecolor image analysis, then X is an m-by-n matrix or an m-by-n-by-3
array, respectively.

For more information on image formats, see the image and imfinfo
reference pages.

Examples % Load original image.
load nbarb1;

% Perform SWT decomposition
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% of X at level 3 using sym4.
swc = swt2(X,3,'sym4');
% Second usage.
[ca,chd,cvd,cdd] = swt2(X,3,'sym4');

% Reconstruct s from the stationary wavelet
% decomposition structure swc.
a0 = iswt2(swc,'sym4');
% Second usage.
a0 = iswt2(ca,chd,cvd,cdd,'sym4');
% Check for perfect reconstruction.
err = max(max(abs(X-a0)))
ans =

2.3482e-010

errbis = max(max(abs(X-a0bis)))
ans =

2.3482e-010

References Nason, G.P.; B.W. Silverman (1995), “The stationary wavelet transform
and some statistical applications,” Lecture Notes in Statistics, 103, pp.
281–299.

Coifman, R.R.; Donoho D.L. (1995), “Translation invariant de-noising,”
Lecture Notes in Statistics, 103, pp. 125–150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), “Time-invariant
orthonormal wavelet representations,” IEEE Trans. Sign. Proc., vol.
44, 8, pp. 1964–1970.

See Also idwt2 | swt2 | waverec2
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Purpose Laurent matrices constructor

Syntax M = laurmat(V)

Description M = laurmat(V) returns the Laurent matrix object M associated with
V which can be a cell array (at most two dimensional) of Laurent
polynomials (see laurpoly) or an ordinary matrix.

Examples % Define Laurent matrices.
M1 = laurmat(eye(2,2))

| 1 0 |
| |

M1 = | |
| |
| 0 1 |

Z = laurpoly(1,1);
M2 = laurmat({1 Z;0 1})

| 1 z^(+1) |
| |

M2 = | |
| |
| 0 1 |

% Calculus on Laurent polynomials.
P = M1 * M2

| 1 z^(+1) |
| |

P = | |
| |
| 0 1 |

d = det(P)

1-242



laurmat

d(z) = 1

References Strang, G.; T. Nguyen (1996), Wavelets and filter banks,
Wellesley-Cambridge Press.

Sweldens, W. (1998), “The Lifting Scheme: a Construction of Second
Generation of Wavelets,” SIAM J. Math. Anal., 29 (2), pp. 511–546.

See Also laurpoly
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Purpose Laurent polynomials constructor

Syntax P = laurpoly(C,d)
P = laurpoly(C,'dmin',d)
P = laurpoly(C,'dmax',d)
P = laurpoly(C,d)

Description P = laurpoly(C,d) returns a Laurent polynomial object. C is a vector
whose elements are the coefficients of the polynomial P and d is the
highest degree of the monomials of P.

If m is the length of the vector C, P represents the following Laurent
polynomial:

P(z) = C(1)*z^d + C(2)*z^(d-1) + ... + C(m)*z^(d-m+1)

P = laurpoly(C,'dmin',d) specifies the lowest degree instead of
the highest degree of monomials of P. The corresponding output P
represents the following Laurent polynomial:

P(z) = C(1)*z^(d+m-1) + ... + C(m-1)*z^(d+1) + C(m)*z^d

P = laurpoly(C,'dmax',d) is equivalent to P = laurpoly(C,d).

Examples % Define Laurent polynomials.
P = laurpoly([1:3],2);
P = laurpoly([1:3],'dmax',2)

P(z) = + z^(+2) + 2*z^(+1) + 3

P = laurpoly([1:3],'dmin',2)

P(z) = + z^(+4) + 2*z^(+3) + 3*z^(+2)

% Calculus on Laurent polynomials.
Z = laurpoly(1,1)
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Z(z) = z^(+1)

Q = Z*P

Q(z) = + z^(+5) + 2*z^(+4) + 3*z^(+3)

R = Z^1 - Z^-1

R(z) = + z^(+1) - z^(-1)

References Strang, G.; T. Nguyen (1996), Wavelets and filter banks,
Wellesley-Cambridge Press.

Sweldens, W. (1998), “The Lifting Scheme: a Construction of Second
Generation of Wavelets,” SIAM J. Math. Anal., 29 (2), pp. 511–546.

See Also laurmat
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Purpose Determine terminal nodes

Syntax N = leaves(T)
[N,K] = leaves(T,'sort')
N = leaves(T,'dp')
[N,K] = leaves(T,'sortdp')
[N,K] = leaves(T,'sdp')

Description N = leaves(T) returns the indices of terminal nodes of the tree T
where N is a column vector.

The nodes are ordered from left to right as in tree T.

[N,K] = leaves(T,'s') or [N,K] = leaves(T,'sort') returns
sorted indices. M = N(K) are the indices reordered as in tree T, from
left to right.

N = leaves(T,'dp') returns a matrix N, which contains the depths
and positions of terminal nodes.

N(i,1) is the depth of the i-th terminal node, and N(i,2) is the position
of the i-th terminal node.

[N,K] = leaves(T,'sortdp') or [N,K] = leaves(T,'sdp') returns
sorted nodes.

Examples % Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t=nodejoin(t,5);
t=nodejoin(t,4);
plot(t)
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% List terminal nodes (index).
tnodes_ind = leaves(t)
tnodes_ind =

7
8
4
5

13
14

% List terminal nodes (sorted on index).
[tnodes_ind,Ind] = leaves(t,'sort')
tnodes_ind =

4
5
7
8

13
14

Ind =
3
4
1
2
5
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6

% List terminal nodes (Depth_Position).
tnodes_depo = leaves(t,'dp')
tnodes_depo =

3 0
3 1
2 1
2 2
3 6
3 7

% List terminal nodes (sorted on Depth_Position).
[tnodes_depo,Ind] = leaves(t,'sortdp')
tnodes_depo =

2 1
2 2
3 0
3 1
3 6
3 7

Ind =
3
4
1
2
5
6

See Also tnodes | noleaves
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Purpose Apply elementary lifting steps on quadruplet of filters

Syntax [LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,ELS)
liftfilt(LoD,HiD,LoR,HiR,ELS,TYPE,VALUE)

Description [LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,ELS) returns
the four filters LoDN, HiDN, LoRN, and HiRN obtained by an elementary
lifting step (ELS) starting from the four filters LoD, HiD, LoR, and HiR.
The four input filters verify the perfect reconstruction condition.

ELS is a structure such that

• TYPE = ELS.type contains the type of the elementary lifting step.
The valid values for TYPE are 'p' (primal) or 'd' (dual).

• VALUE = ELS.value contains the Laurent polynomial T associated
with the elementary lifting step (see laurpoly). If VALUE is a vector,
the associated Laurent polynomial T is equal to laurpoly(VALUE,0).

In addition, ELS may be a scaling step. In that case, TYPE is equal to 's'
(scaling) and VALUE is a scalar different from zero.

liftfilt(LoD,HiD,LoR,HiR,ELS,TYPE,VALUE) gives the same outputs.

Note If TYPE = 'p' , HiD and LoR are unchanged.
If TYPE = 'd' , LoD and HiR are unchanged.
If TYPE = 's' , the four filters are changed.
If ELS is an array of elementary lifting steps, liftfilt(...,ELS)
performs each step successively.

liftfilt(...,FLAGPLOT) plots the successive biorthogonal
pairs—scaling function and wavelet.

Examples % Get Haar filters.
[LoD,HiD,LoR,HiR] = wfilters('haar');

% Lift the Haar filters.
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twoels(1) = struct('type','p','value',...
laurpoly([0.125 -0.125],0));
twoels(2) = struct('type','p','value',...
laurpoly([0.125 -0.125],1));
[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,twoels);

% The biorthogonal wavelet bior1.3 is obtained up to
% an unsignificant sign.
[LoDB,HiDB,LoRB,HiRB] = wfilters('bior1.3');
samewavelet = ...
isequal([LoDB,HiDB,LoRB,HiRB],[LoDN,-HiDN,LoRN,HiRN])

samewavelet =

1

See Also laurpoly
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Purpose Lifting schemes

Syntax LS = liftwave(WNAME)
LS = liftwave(WNAME,'Int2Int')

Description LS = liftwave(WNAME) returns the lifting scheme associated with the
wavelet specified by WNAME. LS is a structure, not an integer, and used
by lwt, ilwt, lwt2, etc.

LS = liftwave(WNAME,'Int2Int') performs an integer to integer
wavelet transform. Using 'Int2Int' produces an LS such that when
you use [CA,CD] = lwt(X,LS) or Y = lwt(X,LS) and X is a vector of
integers, the resulting CA, CD, and Y are vectors of integers. If you omit
'Int2Int' then lwt produces vectors of real numbers.

The valid values for WNAME are

WNAME Values Comments

'lazy' A “lazy” wavelet is a
second-generation wavelet
and is not a true mathematical
wavelet.

'haar' Same as 'db1', 'bior1.1', and
’cdf1.1'

'db1', 'db2', 'db3', 'db4',
'db5', 'db6', 'db7', 'db8'

'db2' same as 'sym2', 'db3',
and 'sym4'

'sym2', 'sym3', 'sym4', 'sym5',
'sym6', 'sym7', 'sym8'
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WNAME Values Comments

Cohen-Daubechies-Feauveau
wavelets

'cdf1.1','cdf1.3','cdf1.5'
'cdf3.1','cdf3.3','cdf3.5'
'cdf5.1','cdf5.3','cdf5.5'
'cdf2.2','cdf2.4','cdf2.6'
'cdf4.2','cdf4.4',’cdf4.6’
'cdf6.2','cdf6.4','cdf6.6'

'cdfX.Y' same as 'biorX.Y'
except for bior4.4 and bior5.5.

'biorX.Y' See waveinfo

'rbioX.Y' Reverse of 'biorX.Y'.
See waveinfo

'bs3' Same as 'cdf4.2'

'rbs3' Reverse of 'bs3'

'9.7' Same as 'bior4.4'

'r9.7' Reverse of '9.7'

For more information about lifting schemes, see lsinfo.

Examples % Start from the db2 wavelet and get the
% corresponding lifting scheme.
lsdb2 = liftwave('db2');

% Visualize the obtained lifting scheme.
displs(lsdb2);

lsdb2 = {...
'd' [ -1.73205081] [0]
'p' [ -0.06698730 0.43301270] [1]
'd' [ 1.00000000] [-1]
[ 1.93185165] [ 0.51763809] []
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};

See Also laurpoly
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Purpose Identify and chain local maxima

Syntax [lmaxima,indices] = localmax(inputmatrix)
[lmaxima,indices] = localmax(inputmatrix,initrow)
[lmaxima,indices] = localmax(inputmatrix,initrow,regflag)

Description [lmaxima,indices] = localmax(inputmatrix) identifies and chains
the local maxima in the rows of inputmatrix.

[lmaxima,indices] = localmax(inputmatrix,initrow) initializes
the chaining of local maxima begining with row initrow. If there are
no local maxima in initrow, all rows in lmaxima with indices less
than initrow consist of only zeros.

[lmaxima,indices] = localmax(inputmatrix,initrow,regflag)
replaces initrow of inputmatrix with the level-5 approximation
(scaling) coefficients obtained with the sym4 wavelet.

Input
Arguments

inputmatrix

inputmatrix is a matrix of real or complex numbers. Most often,
inputmatrix is a matrix of continuous wavelet transform (CWT)
coefficients, and you use localmax to identify maxima lines. localmax
operates on the absolute values of inputmatrix.

initrow

Initialization row for chaining local maxima. The chaining algorithm
begins at initrow and decrements the row index by 1 until the first
row of the matrix is reached. By specifying initrow, you can exclude
rows from the chaining algorithm.

Default: size(inputmatrix,1)

regflag

Regularization flag. If you set regflag to true, the row of
inputmatrix corresponding to initrow is replaced by the level-5
approximation (scaling) coefficients obtained with the sym4 wavelet.
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Default: true

Output
Arguments

lmaxima

Matrix with local maxima chains. lmaxima only has nonzero entries at
the locations of local maxima in the absolute values of inputmatrix.
Denote the row index of lmaxima by R. You can determine the value of
lmaxima at a local maximum in row R as follows:

• If R>initRow, the value of lmaxima at a local maximum is 1.

• If R=initRow, the value of lmaxima at a local maximum is the
column index in row R.

• If R<initRow, the value of lmaxima at a local maximum in row R is
the column index of the nearest local maximum in row R+1.

To illustrate this, if inputmatrix is:

3 2 5 3
4 6 3 2
4 4 7 4
4 6 2 2

lmaxima with initRow = 4 and regflag = false is:

0 0 2 0
0 3 0 0
0 0 2 0
0 2 0 0

lmaxima with initRow = 3 and regflag = false is:

0 0 2 0
0 3 0 0
0 0 3 0
0 1 0 0
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• If the local maximum in row R lies between two local maxima in row
R+1, the value of the local maximum in row R is the higher column
index in row R+1.

To illustrate this, if inputmatrix is:

0 0 1 0 0 0
0 1 0 1 0 0

lmaxima with initRow = 2 and regflag = false is:

0 0 4 0 0 0
0 2 0 4 0 0

lmaxima with initRow = 1 and regflag = false is:

0 0 3 0 0 0
0 1 0 1 0 0

indices

Linear indices of the nonzero values of lmaxima. Use ind2sub to
convert the linear indices to matrix row and column indices.

Examples Construct a 4-by-4 matrix with local maxima at the following
row-column indices: (4,2), (3,3), (2,2), and (1,3). Set initrow to 4 and
regflag to false.

inputmatrix = ...
[3 2 5 3
4 6 3 2
4 4 7 4
4 6 2 2];
[lmaxima,indices] = localmax(inputmatrix,4,false);
lmaxima

Because localmax operates on the absolute values of inputmatrix,
setting inputmatrix(4,2) = -inputmatrix(4,2) produces an
identical lmaxima.
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inputmatrix(4,2) = -inputmatrix(4,2);
[lmaxima1,indices1] = localmax(inputmatrix,4,false);
isequal(lmaxima,lmaxima1)

Determine the local maxima from the CWT of the cuspamax signal with
the Haar wavelet. Plot the CWT coefficient moduli and the maxima
lines.

load cuspamax;
x = 1:length(cuspamax);
scales = 1:32;
cfs = cwt(cuspamax,scales,'haar');
[lmaxima,indices] = localmax(cfs,[],false);
[iRow,iCol] = find(lmaxima);
subplot(211);
imagesc(abs(cfs)); axis xy;
axis([1 1024 1 32]);
ylabel('Scale'); title('CWT Coefficients (Moduli)');
subplot(212);
plot(x(iCol),scales(iRow),'marker','o','markerfacecolor',[0 0 1],...

'linestyle','none');
xlabel('Position'); ylabel('Scale'); title('Maxima Lines');
axis([1 1024 1 32]);
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Purpose Transform lifting scheme to quadruplet of filters

Syntax [LoD,HiD,LoR,HiR] = ls2filt(LS)

Description [LoD,HiD,LoR,HiR] = ls2filt(LS) returns the four filters LoD, HiD,
LoR, and HiR associated with the lifting scheme LS.

Examples % Start from the db2 wavelet and get the
% corresponding lifting scheme.
LS = liftwave('db2')

LS =

'd' [ -1.7321] [ 0]
'p' [1x2 double] [ 1]
'd' [ 1] [-1]
[1.9319] [ 0.5176] []

% Visualize the obtained lifting scheme.

displs(LS);

LS = {...
'd' [ -1.73205081] [0]
'p' [ -0.06698730 0.43301270] [1]
'd' [ 1.00000000] [-1]
[ 1.93185165] [ 0.51763809] []
};

% Get the filters from the lifting scheme.

[LoD,HiD,LoR,HiR] = ls2filt(LS)

LoD =

-0.1294 0.2241 0.8365 0.4830
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HiD =

-0.4830 0.8365 -0.2241 -0.1294

LoR =

0.4830 0.8365 0.2241 -0.1294

HiR =

-0.1294 -0.2241 0.8365 -0.4830

% Get the db2 filters using wfilters.
% You can check the equality.

[LoDref,HiDref,LoRref,HiRref] = wfilters('db2')

LoDref =

-0.1294 0.2241 0.8365 0.4830

HiDref =

-0.4830 0.8365 -0.2241 -0.1294

LoRref =

0.4830 0.8365 0.2241 -0.1294

HiRref =

-0.1294 -0.2241 0.8365 -0.4830

See Also filt2ls | lsinfo
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Purpose Lifting schemes information

Syntax lsinfo

Description lsinfo displays the following information about lifting schemes. A
lifting scheme LS is a N x 3 cell array. The N-1 first rows of the array
are elementary lifting steps (ELS). The last row gives the normalization
of LS.

Each ELS has this format:

{type, coefficients, max_degree}

where type is 'p' (primal) or 'd' (dual), coefficients is a vector
C of real numbers defining the coefficients of a Laurent polynomial
P described below, and max_degree is the highest degree d of the
monomials of P.

The Laurent polynomial P is of the form

P(z) = C(1)*z^d + C(2)*z^(d−1) + ... + C(m)*z^(d−m+1)

The lifting scheme LS is such that for

k = 1:N-1, LS{k,:} is an ELS, where

LS{k,1} is the lifting type 'p' (primal) or 'd' (dual).

LS{k,2} is the corresponding lifting filter.

LS{k,3} is the highest degree of the Laurent polynomial corresponding
to the filter LS{k,2}.

LS{N,1} is the primal normalization (real number).

LS{N,2} is the dual normalization (real number).

LS{N,3} is not used.

Usually, the normalizations are such that LS{N,1}*LS{N,2} = 1.

For example, the lifting scheme associated with the wavelet db1 is
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LS = {...
'd' [ -1] [0]
'p' [0.5000] [0]
[1.4142] [0.7071] []

}

See Also displs | laurpoly
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Purpose 1-D lifting wavelet transform

Syntax [CA,CD] = lwt(X,W)
X_InPlace = lwt(X,W)
lwt(X,W,LEVEL)
X_InPlace = lwt(X,W,LEVEL,'typeDEC',typeDEC)
[CA,CD] = lwt(X,W,LEVEL,'typeDEC',typeDEC)

Description lwt performs a 1-D lifting wavelet decomposition with respect to a
particular lifted wavelet that you specify.

[CA,CD] = lwt(X,W) computes the approximation coefficients vector
CA and detail coefficients vector CD, obtained by a lifting wavelet
decomposition, of the vector X. W is a lifted wavelet name (see liftwave).

X_InPlace = lwt(X,W) computes the approximation and detail
coefficients. These coefficients are stored in place:

CA = X_InPlace(1:2:end) and CD = X_InPlace(2:2:end)

lwt(X,W,LEVEL) computes the lifting wavelet decomposition at level
LEVEL.

X_InPlace = lwt(X,W,LEVEL,'typeDEC',typeDEC) or [CA,CD] =
lwt(X,W,LEVEL,'typeDEC',typeDEC) with typeDEC = 'w' or 'wp'
computes the wavelet or the wavelet packet decomposition using lifting,
at level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting
scheme LS: lwt(X,LS,...) instead of lwt(X,W,...).

For more information about lifting schemes, see lsinfo.

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
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% Perform LWT at level 1 of a simple signal.
x = 1:8;
[cA,cD] = lwt(x,lsnew)

cA =

1.9445 4.9497 7.7782 10.6066

cD =

0.7071 0.7071 0.7071 0.7071

% Perform integer LWT of the same signal.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cDint] = lwt(x,lsnewInt)

cAint =

1 3 5 7

cDint =

1 1 1 1

Algorithms This function uses the polyphase algorithm.

lwt reduces to dwt with zero-padding extension mode and without
extra-coefficients.

References Strang, G.; T. Nguyen (1996), Wavelets and filter banks,
Wellesley-Cambridge Press.

Sweldens, W. (1998), “The Lifting Scheme: a Construction of Second
Generation of Wavelets,” SIAM J. Math. Anal., 29 (2), pp. 511–546.
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See Also ilwt

1-265



lwt2

Purpose 2-D lifting wavelet transform

Syntax [CA,CH,CV,CD] = lwt2(X,W)
X_InPlace = lwt2(X,LS)
lwt2(X,W,LEVEL)
X_InPlace = lwt2(X,W,LEVEL,'typeDEC',typeDEC)
[CA,CH,CV,CD] = LWT2(X,W,LEVEL,'typeDEC',typeDEC)

Description lwt2 performs a 2-D lifting wavelet decomposition with respect to a
particular lifted wavelet that you specify.

[CA,CH,CV,CD] = lwt2(X,W) computes the approximation coefficients
matrix CA and detail coefficients matrices CH, CV, and CD, obtained by
a lifting wavelet decomposition, of the matrix X. W is a lifted wavelet
name (see liftwave).

X_InPlace = lwt2(X,LS) computes the approximation and detail
coefficients. These coefficients are stored in place:

• CA = X_InPlace(1:2:end,1:2:end)

• CH = X_InPlace(2:2:end,1:2:end)

• CV = X_InPlace(1:2:end,2:2:end)

• CD = X_InPlace(2:2:end,2:2:end)

lwt2(X,W,LEVEL) computes the lifting wavelet decomposition at level
LEVEL.

X_InPlace = lwt2(X,W,LEVEL,'typeDEC',typeDEC) or
[CA,CH,CV,CD] = LWT2(X,W,LEVEL,'typeDEC',typeDEC) with
typeDEC = 'w' or 'wp' computes the wavelet or the wavelet packet
decomposition using lifting, at level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting
scheme LS: lwt2(X,LS,...) instead of LWT2(X,W,...).

For more information about lifting schemes, see lsinfo.
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Tips When X represents an indexed image, X, as well as the output arrays
cA,cH,cV,cD, or X_InPlace are m-by-n matrices. When X represents a
truecolor image, it is an m-by-n-by-3 array, where each m-by-n matrix
represents a red, green, or blue color plane concatenated along the third
dimension.

For more information on image formats, see the image and imfinfo
reference pages .

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);

% Perform LWT at level 1 of a simple image.
x = reshape(1:16,4,4);
[cA,cH,cV,cD] = lwt2(x,lsnew)

cA =

5.7500 22.7500
10.0000 27.0000

cH =

1.0000 1.0000
1.0000 1.0000

cV =

4.0000 4.0000
4.0000 4.0000
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cD =

0 0
0 0

% Perform integer LWT of the same image.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cHint,cVint,cDint] = lwt2(x,lsnewInt)

cAint =

3 11
5 13

cHint =

1 1
1 1

cVint =

4 4
4 4

cDint =

0 0
0 0
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Algorithms This function implements the polyphase algorithm.

lwt reduces to dwt with zero-padding extension mode and without
extra-coefficients.

References Strang, G.; T. Nguyen (1996), Wavelets and filter banks,
Wellesley-Cambridge Press.

Sweldens, W. (1998), “The Lifting Scheme: a Construction of Second
Generation of Wavelets,” SIAM J. Math. Anal., 29 (2), pp. 511–546.

See Also ilwt2
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Purpose Extract or reconstruct 1-D LWT wavelet coefficients

Syntax Y = lwtcoef(TYPE,XDEC,LS,LEVEL,LEVEXT)
Y = lwtcoef(TYPE,XDEC,W,LEVEL,LEVEXT)

Description Y = lwtcoef(TYPE,XDEC,LS,LEVEL,LEVEXT) returns the coefficients or
the reconstructed coefficients of level LEVEXT, extracted from XDEC, the
LWT decomposition at level LEVEL obtained with the lifting scheme LS.

The valid values for TYPE are

TYPE Values Description

'a' Approximations

'd' Details

'ca' Coefficients of approximations

'cd' Coefficients of details

Y = lwtcoef(TYPE,XDEC,W,LEVEL,LEVEXT) returns the same output
using W, which is the name of a lifted wavelet.

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);

% Perform LWT at level 2 of a simple signal.
x = 1:8;
xDec = lwt(x,lsnew,2)

xDec =
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4.3438 0.7071 2.1250 0.7071 13.0313 0.7071
2.0000 0.7071

% Extract approximation coefficients of level 1.
ca1 = lwtcoef('ca',xDec,lsnew,2,1)

ca1 =

1.9445 4.9497 7.7782 10.6066

% Reconstruct approximations and details.
a1 = lwtcoef('a',xDec,lsnew,2,1)

a1 =

1.3750 1.3750 3.5000 3.5000 5.5000 5.5000
7.5000 7.5000

a2 = lwtcoef('a',xDec,lsnew,2,2)

a2 =

2.1719 2.1719 2.1719 2.1719 6.5156 6.5156
6.5156 6.5156

d1 = lwtcoef('d',xDec,lsnew,2,1)

d1 =

-0.3750 0.6250 -0.5000 0.5000 -0.5000 0.5000
-0.5000 0.5000

d2 = lwtcoef('d',xDec,lsnew,2,2)

d2 =

-0.7969 -0.7969 1.3281 1.3281 -1.0156 -1.0156
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0.9844 0.9844

% Check perfect reconstruction.
err = max(abs(x-a2-d2-d1))

err =

9.9920e-016

See Also ilwt | lwt
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Purpose Extract or reconstruct 2-D LWT wavelet coefficients

Syntax Y = lwtcoef2(TYPE,XDEC,LS,LEVEL,LEVEXT)
Y = lwtcoef2(TYPE,XDEC,W,LEVEL,LEVEXT)

Description Y = lwtcoef2(TYPE,XDEC,LS,LEVEL,LEVEXT) returns the coefficients
or the reconstructed coefficients of level LEVEXT, extracted from XDEC,
the LWT decomposition at level LEVEL obtained with the lifting scheme
LS.

The valid values for TYPE are listed in this table.

TYPE Values Description

'a' Approximations

'h' Horizontal details

'v' Vertical details

'd' Diagonal details

'ca' Coefficients of approximations

'ch' Coefficients of horizontal details

'cv' Coefficients of vertical details

'cd' Coefficients of diagonal details

Y = lwtcoef2(TYPE,XDEC,W,LEVEL,LEVEXT) returns the same output
using W, which is the name of a lifted wavelet.

Tips If XDEC is obtained from an indexed image analysis or a truecolor image
analysis, it is an m-by-n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo
reference pages.

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
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lshaar = liftwave('haar');

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);

% Perform LWT at level 2 of a simple image.
x = reshape(1:16,4,4);
xDec = lwt2(x,lsnew,2)

xDec =

27.4375 4.0000 17.0000 4.0000
1.0000 0 1.0000 0
4.2500 4.0000 0.0000 4.0000
1.0000 0 1.0000 0

% Extract approximation coefficients of level 1.
ca1 = lwtcoef2('ca',xDec,lsnew,2,1)

ca1 =

5.7500 22.7500
10.0000 27.0000

% Reconstruct approximations and details.
a1 = lwtcoef2('a',xDec,lsnew,2,1)

a1 =

2.8750 2.8750 11.3750 11.3750
2.8750 2.8750 11.3750 11.3750
5.0000 5.0000 13.5000 13.5000
5.0000 5.0000 13.5000 13.5000

a2 = lwtcoef2('a',xDec,lsnew,2,2)
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a2 =

6.8594 6.8594 6.8594 6.8594
6.8594 6.8594 6.8594 6.8594
6.8594 6.8594 6.8594 6.8594
6.8594 6.8594 6.8594 6.8594

h1 = lwtcoef2('h',xDec,lsnew,2,1)

h1 =

-0.3750 -0.3750 -0.3750 -0.3750
0.6250 0.6250 0.6250 0.6250

-0.5000 -0.5000 -0.5000 -0.5000
0.5000 0.5000 0.5000 0.5000

v1 = lwtcoef2('v',xDec,lsnew,2,1)

v1 =

-1.5000 2.5000 -2.0000 2.0000
-1.5000 2.5000 -2.0000 2.0000
-1.5000 2.5000 -2.0000 2.0000
-1.5000 2.5000 -2.0000 2.0000

d1 = lwtcoef2('d',xDec,lsnew,2,1)

d1 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

h2 = lwtcoef2('h',xDec,lsnew,2,2)

h2 =
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-0.7969 -0.7969 -0.7969 -0.7969
-0.7969 -0.7969 -0.7969 -0.7969
1.3281 1.3281 1.3281 1.3281
1.3281 1.3281 1.3281 1.3281

v2 = lwtcoef2('v',xDec,lsnew,2,2)

v2 =

-3.1875 -3.1875 5.3125 5.3125
-3.1875 -3.1875 5.3125 5.3125
-3.1875 -3.1875 5.3125 5.3125
-3.1875 -3.1875 5.3125 5.3125

d2 = lwtcoef2('d',xDec,lsnew,2,2)

d2 =

1.0e-015 *

0.2498 0.2498 -0.4163 -0.4163
0.2498 0.2498 -0.4163 -0.4163

-0.4163 -0.4163 0.6939 0.6939
-0.4163 -0.4163 0.6939 0.6939

% Check perfect reconstruction.
err = max(max(abs(x-a2-h2-v2-d2-h1-v1-d1)))

err =

3.5527e-015

See Also ilwt2 | lwt2
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Purpose Multisignals 1-D clustering

Syntax S = mdwtcluster(X)
S = mdwtcluster(X,'PropName1',PropVal1,'PropName2',PropVal2,

...)

Description S = mdwtcluster(X) constructs clusters from a hierarchical cluster
tree. The input matrix X is decomposed in row direction using the DWT
function with the haar wavelet and the maximum allowed level.

S =
mdwtcluster(X,'PropName1',PropVal1,'PropName2',PropVal2,
...) allows you to modify some properties. The valid choices
for PropName are:

Note mdwtcluster requires the Statistics Toolbox™

'dirDec' 'r' (row) or 'c' (column). Default value is
'r'.

'level' Level of the DWT decomposition. Default
value is:
level=fix(log2(size(X,d)))
where d=1 or d=2, depending on the dirDec
value.

'wname' Wavelet name used for DWT. Default value
is 'haar'.

'dwtEXTM' DWT extension mode (see dwtmode).

'pdist' See Statistics Toolbox pdist function. Default
value is 'euclidean'.

'linkage' See Statistics Toolbox linkage function.
Default value is 'ward'.
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'maxclust' Number of clusters. Default value is 6. The
input variable can be a vector.

'lst2clu' Cell array that contains the list of data to
classify.

If N is the level of decomposition, the allowed
name values for the cells are:

• 's' — Signal

• 'aj' — Approximation at level j

• 'dj' — Detail at level j

• 'caj' — Coefficients of approximation at
level j

• 'cdj'— Coefficients of detail at level j

Default value is {'s';'ca1';...;'caN'}.

The output structure S is such that for each partition j:

S.Idx(:,j) Contains the cluster numbers obtained from
the hierarchical cluster tree (see cluster in
the Statistics Toolbox software).

S.Incons(:,j) Contains the inconsistent values of each
non-leaf node in the hierarchical cluster tree
(see Statistics Toolbox software function
inconsistent).

S.Corr(j) Contains the cophenetic correlation
coefficients of the partition (see Statistics
Toolbox software function cophenet).
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Note If maxclustVal is a vector, then IdxCLU is a multidimensional
array such that IdxCLU(:,j,k) contains the cluster numbers obtained
from the hierarchical cluster tree for k clusters.

Examples load elecsig10
lst2clu = {'s','ca1','ca3','ca6'};

% Compute the structure resulting from multisignal clustering
S = mdwtcluster(signals,'maxclust',4,'lst2clu',lst2clu)

S =

IdxCLU: [70x4 double]
Incons: [69x4 double]

Corr: [0.7920 0.7926 0.7947 0.7631]

% Retrieve indices of clusters
IdxCLU = S.IdxCLU;

% Plot the first cluster
plot(signals(IdxCLU(:,1)==1,:)','r');
hold on;

% Plot the third clustering
plot(signals(IdxCLU(:,1)==3,:)','b')
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% Check the equality of partitions
equalPART = isequal(IdxCLU(:,1),IdxCLU(:,3))

equalPART =

1

% So we can see that we obtain the same partitions using
% coefficents of approximation at level 3 instead of original
% signals. Much less information is then used.

See Also mdwtdec | wavedec
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Purpose Multisignal 1-D wavelet decomposition

Syntax DEC = mdwtdec(DIRDEC,X,LEV,WNAME)
DEC = mdwtdec(DIRDEC,X,LEV,LoD,HiD,LoR,HiR)
DEC = mdwtdec(...,'mode',EXTMODE)

Description DEC = mdwtdec(DIRDEC,X,LEV,WNAME) returns the wavelet
decomposition at level LEV of each row (if DIRDEC = 'r') or each column
(if DIRDEC = 'c') of matrix X, using the wavelet WNAME.

The output DEC is a structure with the following fields:

'dirDec' Direction indicator: 'r' (row) or 'c' (column)

'level' Level of the DWT decomposition

'wname' Wavelet name

'dwtFilters' Structure with four fields LoD, HiD, LoR, and
HiR

'dwtEXTM' DWT extension mode (see dwtmode)

'dwtShift' DWT shift parameter (0 or 1)

'dataSize' Size of X

'ca' Approximation coefficients at level LEV

'cd' Cell array of detail coefficients, from level 1
to level LEV

Coefficients cA and cD{k} (for k = 1 to LEV) are matrices and are
stored in rows if DIRDEC = 'r' or in columns if DIRDEC = 'c'.

DEC = mdwtdec(DIRDEC,X,LEV,LoD,HiD,LoR,HiR) uses the four filters
instead of the wavelet name.

DEC = mdwtdec(...,'mode',EXTMODE) computes the wavelet
decomposition with the EXTMODE extension mode that you specify (see
dwtmode for the valid extension modes).
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Examples % Load original 1D-multisignal.
load thinker

% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2')
dec =

dirDec: 'r'
level: 2
wname: 'db2'

dwtFilters: [1x1 struct]
dwtEXTM: 'sym'

dwtShift: 0
dataSize: [192 96]

ca: [192x26 double]
cd: {[192x49 double] [192x26 double]}

% Compute the associated filters of db2 wavelet.
[LoD,HiD,LoR,HiR] = wfilters('db2');

% Perform a decomposition at level 2 using filters.
decBIS = mdwtdec('r',X,2,LoD,HiD,LoR,HiR)

decBIS =
dirDec: 'r'
level: 2
wname: ''

dwtFilters: [1x1 struct]
dwtEXTM: 'sym'

dwtShift: 0
dataSize: [192 96]

ca: [192x26 double]
cd: {[192x49 double] [192x26 double]}

References Daubechies, I. , Ten lectures on wavelets, CBMS-NSF conference series
in applied mathematics. SIAM Ed., 1992.
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Mallat, S., “A theory for multiresolution signal decomposition: the
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol.
11, no. 7, 1989, pp. 674–693.

Meyer, Y. , Ondelettes et opérateurs, Tome 1, Hermann Ed. (English
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also mdwtdec | wavedec

1-283



mdwtrec

Purpose Multisignal 1-D wavelet reconstruction

Syntax X = mdwtrec(DEC)
X = mdwtrec(DEC,IDXSIG)
Y = mdwtrec(DEC,TYPE,LEV)
A = mdwtrec(DEC,'a')
A = mdwtrec(DEC,'a',LEVDEC)
D = mdwtrec(DEC,'d')
CA = mdwtrec(DEC,'ca')
CA = mdwtrec(DEC,'ca',LEVDEC)
CD = mdwtrec(DEC,'cd',MODE)
CFS = mdwtrec(DEC,'cfs',MODE)
Y = mdwtrec(...,IDXSIG)

Description X = mdwtrec(DEC) returns the original matrix of signals, starting from
the wavelet decomposition structure DEC (see mdwtdec).

X = mdwtrec(DEC,IDXSIG) reconstructs the signals whose indices are
given by the vector IDXSIG.

Y = mdwtrec(DEC,TYPE,LEV) extracts or reconstructs the detail or
approximation coefficients at level LEV depending on the TYPE value.
The maximum value for LEV is LEVDEC = DEC.level.

When TYPE is equal to:

• 'cd' or 'ca', coefficients of level LEV are extracted.

• 'd' or 'a', coefficients of level LEV are reconstructed.

• 'a' or 'ca', LEV must be such that 0 ≤ LEV ≤ LEVDEC.

• 'd' or 'cd', LEV must be such that 1 ≤ LEV ≤ LEVDEC.

A = mdwtrec(DEC,'a') is equivalent to A =
mdwtrec(DEC,'a',LEVDEC).

D = mdwtrec(DEC,'d') returns a matrix containing the sum of all the
details, so that X = A + D.

CA = mdwtrec(DEC,'ca') is equivalent to CA =
mdwtrec(DEC,'ca',LEVDEC).
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CD = mdwtrec(DEC,'cd',MODE) returns a matrix containing all the
detail coefficients.

CFS = mdwtrec(DEC,'cfs',MODE) returns a matrix containing all the
coefficients.

For MODE = 'descend' the coefficients are concatened from level
LEVDEC to level 1 and MODE = 'descend' concatenates from level 1 to
level LEVDEC). The default is MODE = 'descend'. The concatenation is
made row-wise if DEC.dirDEC = 'r' or column-wise if DEC.dirDEC
= 'c'.

Y = mdwtrec(...,IDXSIG) extracts or reconstructs the detail or the
approximation coefficients for the signals whose indices are given by
the vector IDXSIG.

Examples % Load original 1D-multisignal.
load thinker

% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2');

% Reconstruct the original matrix of signals, starting from
% the wavelet decomposition structure dec.
XR = mdwtrec(dec);

% Compute the reconstruction error.
errREC = max(max(abs(X-XR)))

errREC =
2.1026e-010

% Reconstruct the original signal 31, the corresponding
% approximation at level 2, details at levels 1 and 2.
Y = mdwtrec(dec,31);
A2 = mdwtrec(dec,'a',2,31);
D2 = mdwtrec(dec,'d',2,31);
D1 = mdwtrec(dec,'d',1,31);
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% Compute the reconstruction error for signal 31.
errREC = max(abs(Y-A2-D2-D1))

errREC =
6.8390e-014

References Daubechies, I., Ten lectures on wavelets, CBMS-NSF conference series
in applied mathematics. SIAM Ed., 1992.

Mallat, S., “A theory for multiresolution signal decomposition: the
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol.
11, no. 7, 1989, pp. 674–693.

Meyer, Y., Ondelettes et opérateurs, Tome 1, Hermann Ed. (English
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also mdwtdec | waverec
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Purpose Approximation quality metrics

Syntax [PSNR,MSE,MAXERR,L2RAT] = measerr(X,XAPP)
[...] = measerr(...,BPS)

Description [PSNR,MSE,MAXERR,L2RAT] = measerr(X,XAPP) returns the peak
signal-to-noise ratio, PSNR, mean square error, MSE, maximum squared
error, MAXERR, and ratio of squared norms, L2RAT, for an input signal
or image, X, and its approximation, XAPP.

[...] = measerr(...,BPS) uses the bits per sample, BPS, to
determine the peak signal-to-noise ratio.

Input
Arguments

X

X is a real-valued signal or image.

XAPP

XAPP is a real-valued signal or image approximation with a size equal
to that of the input data, X.

BPS

BPS is the number of bits per sample in the data.

Default: 8

Output
Arguments

PSNR

PSNR is the peak signal-to-noise ratio in decibels (dB). The PSNR is
only meaningful for data encoded in terms of bits per sample, or bits
per pixel. For example, an image with 8 bits per pixel contains integers
from 0 to 255.

MSE
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The mean square error (MSE) is the squared norm of the difference
between the data and the approximation divided by the number of
elements.

MAXERR

MAXERR is the maximum absolute squared deviation of the data, X, from
the approximation, XAPP.

L2RAT

L2RAT is the ratio of the squared norm of the signal or image
approximation, XAPP, to the input signal or image, X.

Definitions Peak Signal to Noise Ratio (PSNR)

The following equation defines the PSNR:

20
2 1

10log ( )
B

MSE

−

where MSE represents the mean square error and B represents the
bits per sample.

Mean Square Error (MSE)

The mean square error between a signal or image, X, and an
approximation, Y, is the squared norm of the difference divided by the
number of elements in the signal or image:

|| ||X Y
N
 2

Examples Approximate an image and calculate approximation quality metrics.

load woman;
Xapp = X;
Xapp(X<=50) = 1;
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[psnr,mse,maxerr,L2rat] = measerr(X,Xapp);
figure; colormap(map);
subplot(1,2,1); image(X);
subplot(1,2,2); image(Xapp);

Measure approximation quality in an RGB image.

X = imread('africasculpt.jpg');
Xapp = X;
Xapp(X<=100) = 1;
[psnr,mse,maxerr,L2rat] = measerr (X,Xapp)
figure;
subplot(1,2,1); image(X);
subplot(1,2,2); image(Xapp);

References Huynh-Thu, Q.Scope of validity of PSNR in image/video quality
assessment, Electronics Letters, 44, 2008, pp. 800–801.

See Also wden | wdencmp

Tutorials • “Data Compression”

• “Denoising and Nonparametric Function Estimation”
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Purpose Mexican hat wavelet

Syntax [PSI,X] = mexihat(LB,UB,N)

Description [PSI,X] = mexihat(LB,UB,N) returns values of the Mexican hat
wavelet on an N point regular grid, X, in the interval [LB,UB].

Output arguments are the wavelet function PSI computed on the grid X.

This wavelet has [-5 5] as effective support. Although [-5 5] is the
correct theoretical effective support, a wider effective support, [-8 8], is
used in the computation to provide more accurate results.

This function is proportional to the second derivative function of the
Gaussian probability density function.

Examples % Set effective support and grid parameters.
lb = -5; ub = 5; n = 1000;

% Compute and plot Mexican hat wavelet.
[psi,x] = mexihat(lb,ub,n);
plot(x,psi), title('Mexican hat wavelet')
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See Also waveinfo
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Purpose Meyer wavelet

Syntax [PHI,PSI,T] = meyer(LB,UB,N)

Description [PHI,PSI,T] = meyer(LB,UB,N) returns Meyer scaling and wavelet
functions evaluated on an N point regular grid in the interval [LB,UB].

N must be a power of two.

Output arguments are the scaling function PHI and the wavelet function
PSI computed on the grid T. These functions have [-8 8] as effective
support.

If only one function is required, a fourth argument is allowed:

[PHI,T] = meyer(LB,UB,N,'phi')
[PSI,T] = meyer(LB,UB,N,'psi')

When the fourth argument is used, but not equal to 'phi' or 'psi',
outputs are the same as in the main option.

The Meyer wavelet and scaling function are defined in the frequency
domain.

By changing the auxiliary function (see meyeraux for more information),
you get a family of different wavelets.

Examples % Set effective support and grid parameters.
lb = -8; ub = 8; n = 1024;

% Compute and plot Meyer wavelet and scaling functions.
[phi,psi,x] = meyer(lb,ub,n);
subplot(211), plot(x,psi)
title('Meyer wavelet')
subplot(212), plot(x,phi)
title('Meyer scaling function')
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Algorithms Starting from an explicit form of the Fourier transform ̂ of ϕ, meyer

computes the values of ̂ on a regular grid, and then the values of ϕ are
computed using instdfft, the inverse nonstandard discrete FFT.

The procedure for ψ is along the same lines.

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference
series in applied mathematics, SIAM Ed., pp. 117–119, 137, 152.

See Also meyeraux | wavefun | waveinfo
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Purpose Meyer wavelet auxiliary function

Syntax Y = meyeraux(X)

Description Y = meyeraux(X) returns values of the auxiliary function used for
Meyer wavelet generation evaluated at the elements of the vector or
matrix X.

The function is

35 84 70 204 5 6 7x x x x− + −

See Also meyer
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Purpose Morlet wavelet

Syntax [PSI,X] = morlet(LB,UB,N)

Description [PSI,X] = morlet(LB,UB,N) returns values of the Morlet wavelet on
an N point regular grid in the interval [LB,UB].

Output arguments are the wavelet function PSI computed on the grid X,
and the grid X.

This wavelet has [-4 4] as effective support. Although [-4 4] is the
correct theoretical effective support, a wider effective support, [-8 8], is
used in the computation to provide more accurate results.

Examples % Set effective support and grid parameters.
lb = -4; ub = 4; n = 1000;
% Compute and plot Morlet wavelet.
[psi,x] = morlet(lb,ub,n);
plot(x,psi), title('Morlet wavelet')
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See Also waveinfo
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Purpose Multisignal 1-D compression using wavelets

Syntax [XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH)
[XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH,PARAM)
[XC,THRESH] = mswcmp('cmpsig',...)
[DECCMP,THRESH] = mswcmp('cmpdec',...)
THRESH = mswcmp('thr',...)
[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH)
[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM)

[...] = mswcmp(...,S_OR_H)
[...] = mswcmp(...,S_OR_H,KEEPAPP)
[...] = mswcmp(...,S_OR_H,KEEPAPP,IDXSIG)

Description mswcmp computes thresholds and, depending on the selected option,
performs compression of 1-D signals using wavelets.

[XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH) or
[XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH,PARAM) returns
a compressed (indicated by 'cmp' input) version XC of the original
multisignal matrix X, whose wavelet decomposition structure is DEC.
The output XC is obtained by thresholding the wavelet coefficients:
DECCMP, which is the wavelet decomposition associated with XC (see
mdwtdec), and THRESH is the matrix of threshold values. The input METH
is the name of the compression method and PARAM is the associated
parameter, if required.

Valid compression methods METH are shown in the following tables.
For methods that use an associated parameter, the range of allowable
PARAM values is also shown.

'rem_n0' Remove near 0

'bal_sn' Balance sparsity-norm

'sqrtbal_sn' Balance sparsity-norm (sqrt)

'scarce' Scarce, PARAM (any number)

'scarcehi' Scarce high, 2.5 ≤ PARAM ≤ 10
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'scarceme' Scarce medium, 1.5 ≤ PARAM ≤ 2.5

'scarcelo' Scarce low, 1 ≤ PARAM ≤ 2

PARAM is a sparsity parameter, and it should be such that: 1 ≤ PARAM ≤
10. For scarce method no control is done.

'L2_perf' Energy ratio

'N0_perf' Zero coefficients ratio

PARAM is a real number which represents the required performance:

0 ≤ PARAM ≤ 100.

'glb_thr' Global threshold

PARAM is a real positive number.

'man_thr' Manual method

PARAM is an NbSIG-by-NbLEV matrix or NbSIG-by-(NbLEV+1) matrix such
that:

• - PARAM(i,j) is the threshold for the detail coefficients of level j
for the ith signal (1 ≤ j ≤ NbLEV).

• - PARAM(i,NbLEV+1) is the threshold for the approximation
coefficients for the ith signal (if KEEPAPP is 0).

Where NbSIG is the number of signals and NbLEV the number of levels of
decomposition.

[XC,THRESH] = mswcmp('cmpsig',...) or
[DECCMP,THRESH] = mswcmp('cmpdec',...) or
THRESH = mswcmp('thr',...) Instead of the 'cmp' input OPTION,
you can use 'cmpsig', 'cmpdec' or 'thr' to select other output
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arguments. 'thr' returns the computed thresholds, but compression is
not performed.

[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH)
[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM) The
decomposition structure input argument DEC can be replaced by four
arguments: DIRDEC, X, WNAME, and LEV. Before performing a compression
or computing thresholds, the multisignal matrix X is decomposed at
level LEV using the wavelet WNAME, in the direction DIRDEC.

[...] = mswcmp(...,S_OR_H)
[...] = mswcmp(...,S_OR_H,KEEPAPP)
[...] = mswcmp(...,S_OR_H,KEEPAPP,IDXSIG) Three more optional
inputs may be used:

• S_OR_H ('s' or 'h') stands for soft or hard thresholding (see
mswthresh for more details). Default is 'h'.

• KEEPAPP (true or false) indicates whether to keep approximation
coefficients (true) or not (false). Default is false.

• IDXSIG is a vector which contains the indices of the initial signals, or
the string 'all'. Default is ’all'.

Examples % Load original 1D-multisignal.
load thinker

% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2');

% Compress the signals to obtain a percentage of zeros
% near 95% for the wavelet coefficients.
[XC,decCMP,THRESH] = mswcmp('cmp',dec,'N0_perf',95);
[Ecmp,PECcmp,PECFScmp] = wdecenergy(decCMP);

% Plot the original signals 1 and 31, and
% the corresponding compressed signals.
figure;
plot(X([1 31],:)','r--','linewidth',2); hold on

1-299



mswcmp

plot(XC([1 31],:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])
title('X dashed line and XC solid line')

References Birgé L.; P. Massart (1997), “From Model Selection to Adaptive
Estimation,” in D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp.
55–88.

DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), “Image Compression
Through Wavelet Transform Coding,” IEEE Trans. on Inf. Theory,
vol. 38, No 2, pp. 719–746.

Donoho, D.L. (1993), “Progress in Wavelet Analysis and WVD: a Ten
Minute Tour,” in Progress in Wavelet Analysis and Applications, Y.
Meyer, S. Roques, pp. 109–128. Frontières Ed.

Donoho, D.L.; I.M. Johnstone(1994), “Ideal Spatial Adaptation by
Wavelet Shrinkage,” Biometrika, vol. 81, pp. 425–455.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995),
“Wavelet Shrinkage: Asymptopia,” Jour. Roy. Stat. Soc., series B, vol.
57 no. 2, pp. 301–369.
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Donoho, D.L.; I.M. Johnstone, “Ideal De-noising in an Orthonormal
Basis Chosen from a Library of Bases,” C.R.A.S. Paris, t. 319, Ser. I,
pp. 1317–1322.

Donoho, D.L. (1995), “De-noising by Soft-thresholding,” IEEE Trans. on
Inf. Theory, 41, 3, pp. 613–627.

See Also mdwtdec | mdwtrec | mswthresh | wthresh
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Purpose Multisignal 1-D wavelet compression scores

Syntax [THR,L2SCR,NOSCR,IDXSORT] = mswcmpscr(DEC)

Description [THR,L2SCR,NOSCR,IDXSORT] = mswcmpscr(DEC) computes four
matrices: thresholds THR, compression scores L2SCR and NOSCR, and
indices IDXSORT. The decomposition DEC corresponds to a matrix
of wavelet coefficients CFS obtained by concatenation of detail and
(optionally) approximation coefficients, where

CFS = [cd{DEC.level}, ... , cd{1}] or CFS =
[ca, cd{DEC.level}, ... , cd{1}]

The concatenation is made rowwise if DEC.dirDec is equal to 'r' or
columnwise if DEC.dirDec is equal to 'c' .

If NbSIG is the number of original signals and NbCFS the number of
coefficients for each signal (all or only the detail coefficients), then CFS
is an NbSIG-by-NbCFS matrix. Therefore,

• THR, L2SCR, NOSCR are NbSIG-by-(NbCFS+1) matrices

• IDXSORT is an NbSIG-by-NbCFS matrix

• THR(:,2:end) is equal to CFS sorted by row in ascending order with
respect to the absolute value.

• For each row, IDXSORT contains the order of coefficients and
THR(:,1)=0.

For the ith signal:

• L2SCR(i,j) is the percentage of preserved energy (L2-norm),
corresponding to a threshold equal to CFS(i,j-1) (2 ≤ j ≤ NbCFS),
and L2SCR(:,1)=100.

• N0SCR(i,j) is the percentage of zeros corresponding to a threshold
equal to CFS(i,j-1) (2 ≤ j ≤ NbCFS), and N0SCR(:,1)=0.

Three more optional inputs may be used:

[...] = mswcmpscr(...,S_OR_H,KEEPAPP,IDXSIG)
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• S_OR_H ('s' or 'h') stands for soft or hard thresholding (see
mswthresh for more details).

• KEEPAPP (true or false) indicates whether to keep approximation
coefficients (true) or not (false).

• IDXSIG is a vector that contains the indices of the initial signals,
or the string 'all'.

The defaults are, respectively, 'h', false and 'all'.

Examples % Load original 1D-multisignal.
load thinker

% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2');

% Compute compression performances for soft an hard thresholding.
[THR_S,L2SCR_S,N0SCR_S] = mswcmpscr(dec,'s');
[THR_H,L2SCR_H,N0SCR_H] = mswcmpscr(dec,'h');

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference
series in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition:
the wavelet representation,” IEEE Pattern Anal. and Machine Intell.,
vol. 11, no. 7, pp. 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed.
(English translation: Wavelets and operators, Cambridge Univ. Press.
1993.)

See Also mdwtdec | mdwtrec | ddencmp | wdencmp
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Purpose Multisignal 1-D compression thresholds and performances

Syntax [THR_VAL,L2_Perf,N0_Perf] = mswcmptp(DEC,METH)
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(DEC,METH,PARAM)

Description [THR_VAL,L2_Perf,N0_Perf] = mswcmptp(DEC,METH) or
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(DEC,METH,PARAM)
computes the vectors THR_VAL, L2_Perf and N0_Perf obtained after
a compression using the METH method and, if required, the PARAM
parameter (see mswcmp for more information on METH and PARAM).

For the ith signal:

• THR_VAL(i) is the threshold applied to the wavelet coefficients. For a
level dependent method, THR_VAL(i,j) is the threshold applied to
the detail coefficients at level j.

• L2_Perf(i) is the percentage of energy (L2_norm) preserved after
compression.

• N0_Perf(i) is the percentage of zeros obtained after compression.

You can use three more optional inputs:

[...] = mswcmptp(...,S_OR_H,KEEPAPP,IDXSIG)

• S_OR_H ('s' or 'h') stands for soft or hard thresholding (see
mswthresh for more details).

• KEEPAPP (true or false) indicates whether to keep approximation
coefficients (true) or not (false)

• IDXSIG is a vector which contains the indices of the initial signals,
or the string 'all'.

The defaults are, respectively, 'h', false and 'all'.

Examples % Load original 1D-multisignal.
load thinker

% Perform a decomposition at level 2 using wavelet db2.
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dec = mdwtdec('r',X,2,'db2');

% Compute compression thresholds and exact performances
% obtained after a compression using the method 'N0_perf' and
% requiring a percentage of zeros near 95% for the wavelet
% coefficients.
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(dec,'N0_perf',95);

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference
series in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition:
the wavelet representation,” IEEE Pattern Anal. and Machine Intell.,
vol. 11, no. 7, pp. 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed.
(English translation: Wavelets and operators, Cambridge Univ. Press.
1993.)

See Also mdwtdec | mdwtrec | ddencmp | wdencmp
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Purpose Multisignal 1-D denoising using wavelets

Syntax [XD,DECDEN,THRESH] = mswden('den',...)
[XD,THRESH] = mswden('densig',...)
[DECDEN,THRESH] = mswden('dendec',...)
THRESH = mswden('thr',...)
[...] = mswden(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM)
[...] = mswden(...,S_OR_H)
[...] = mswden(...,S_OR_H,KEEPAPP)
[...] = mswden(...,S_OR_H,KEEPAPP,IDXSIG)

Description mswden computes thresholds and, depending on the selected option,
performs denoising of 1-D signals using wavelets.

[XD,DECDEN,THRESH] = mswden('den',...) returns a denoised
version XD of the original multisignal matrix X, whose wavelet
decomposition structure is DEC. The output XD is obtained by
thresholding the wavelet coefficients, DECDEN is the wavelet
decomposition associated to XD (see mdwtdec), and THRESH is the matrix
of threshold values. The input METH is the name of the denoising method
and PARAM is the associated parameter, if required.

Valid denoising methods METH and associated parameters PARAM are:

'rigrsure' Principle of Stein’s Unbiased Risk

'heursure' Heuristic variant of the first option

'sqtwolog' Universal threshold sqrt(2*log(.))

'minimaxi' Minimax thresholding (see thselect)

For these methods PARAM defines the multiplicative threshold rescaling:
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'one' No rescaling

'sln' Rescaling using a single estimation of level
noise based on first level coefficients

'mln' Rescaling using a level dependent estimation
of level noise

Penalization methods

'penal' Penal

'penalhi' Penal high, 2.5 ℜ≤ PARAM ℜ≤ 10

'penalme' Penal medium, 1.5 ℜ≤ PARAM ℜ≤ 2.5

'penallo' Penal low, 1 ℜ≤ PARAM ℜ≤ 2

PARAM is a sparsity parameter, and it should be such that: 1 ≤ PARAM ≤
10. For penal method, no control is done.

Manual method

'man_thr' Manual method

PARAM is an NbSIG-by-NbLEV matrix or NbSIG-by-(NbLEV+1) matrix such
that:

• PARAM(i,j) is the threshold for the detail coefficients of level j for
the ith signal (1 ≤ j ≤ NbLEV).

• PARAM(i,NbLEV+1) is the threshold for the approximation coefficients
for the ith signal (if KEEPAPP is 0).

where NbSIG is the number of signals and NbLEV the number of levels of
decomposition.

Instead of the 'den' input OPTION, you can use 'densig', 'dendec' or
'thr' OPTION to select output arguments:

[XD,THRESH] = mswden('densig',...) or [DECDEN,THRESH] =
mswden('dendec',...)
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THRESH = mswden('thr',...) returns the computed thresholds, but
denoising is not performed.

The decomposition structure input argument DEC can be replaced by
four arguments: DIRDEC, X, WNAME and LEV.

[...] = mswden(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM) before
performing a denoising or computing thresholds, the multisignal matrix
X is decomposed at level LEV using the wavelet WNAME, in the direction
DIRDEC.

You can use three more optional inputs:

[...] = mswden(...,S_OR_H) or
[...] = mswden(...,S_OR_H,KEEPAPP) or
[...] = mswden(...,S_OR_H,KEEPAPP,IDXSIG)

• S_OR_H ('s' or 'h') stands for soft or hard thresholding (see
mswthresh for more details).

• KEEPAPP (true or false) indicates whether to keep approximation
coefficients (true) or not (false).

• IDXSIG is a vector that contains the indices of the initial signals,
or the string 'all'.

The defaults are, respectively, 'h', false and 'all'.

Examples % Load original 1D-multisignal.
load thinker

% Perform a decomposition at level 2 using the wavelet db2.
dec = mdwtdec('r',X,2,'db2');

% Denoise signals using the universal method
% of thresholding (sqtwolog) and the 'sln'
% threshold rescaling (with a single estimation
% of level noise, based on first level coefficients).
[XD,decDEN,THRESH] = mswden('den',dec,'sqtwolog','sln');

% Plot the original signals 1 and 31, and the
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% corresponding denoised signals.
figure;
plot(X([1 31],:)','r--','linewidth',2); hold on
plot(XD([1 31],:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])
title('X dashed line and XD solid line')

References Birgé, L.; P. Massart (1997), “From model selection to adaptive
estimation,” in D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp.
55–88.

DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), “Image compression
through wavelet transform coding,” IEEE Trans. on Inf. Theory, vol.
38, No 2, pp. 719–746.

Donoho, D.L. (1993), “Progress in wavelet analysis and WVD: a ten
minute tour,” in Progress in wavelet analysis and applications, Y.
Meyer, S. Roques, pp. 109–128. Frontières Ed.

Donoho, D.L.; I.M. Johnstone(1994), “Ideal spatial adaptation by
wavelet shrinkage,” Biometrika, vol. 81, pp. 425–455.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995),
“Wavelet shrinkage: asymptopia,” Jour. Roy. Stat. Soc.,series B, vol. 57
no. 2, pp. 301–369.
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Donoho, D.L.; I.M. Johnstone, “Ideal de-noising in an orthonormal
basis chosen from a library of bases,” C.R.A.S. Paris, t. 319, Ser. I,
pp. 1317–1322.

Donoho, D.L. (1995), “De-noising by soft-thresholding,” IEEE Trans. on
Inf. Theory, 41, 3, pp. 613–627.

See Also mdwtdec | mdwtrec | mswthresh | wthresh
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Purpose Nondecimated 1-D wavelet transform

Syntax WT = ndwt(X,N,'wname')
WT = ndwt(X,N,'wname','mode','ExtM')
WT = ndwt(X,N,WF,...)

Description ndwt performs a multilevel 1-D nondecimated wavelet decomposition
using either a particular wavelet ('wname') or the wavelet filters you
specify. The decomposition also uses the specified DWT extension mode
(see dwtmode).

WT = ndwt(X,N,'wname') returns a structure which contains the
non-decimated wavelet transform of the vector X at the level N. N is a
positive integer, and 'wname' is a string containing the wavelet name.
The default default extension mode is'sym'. For more information on
wname, see wfilters.

WT = ndwt(X,N,'wname','mode','ExtM') uses the extension mode
specified in the string 'ExtM'.

WT is a structure with the fields shown in the table.

Instead of a wavelet you can specify four filters (two for decomposition
and two for reconstruction).

WT = ndwt(X,N,WF,...) specifies four filters (two for decomposition
and two for reconstruction) instead of a wavelet name. WF is a 1-by-4
cell array {LoD,HiD,LoR,HiR} or a structure with the four fields 'LoD',
'HiD', 'LoR', 'HiR'.

rowvect Logical value which is true if X is a row vector

level Level of the decomposition

mode Name of the wavelet transform extension mode

filters Structure with 4 fields, LoD, HiD, LoR, HiR,
which contain the filters used for DWT
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dec 1 by (level+1) cell array containing the
coefficients of the decomposition. dec{1}
contains the coefficients of the approximation
and dec{j} (j = 2 to level+1), contains the
coefficients of the detail of level (level+1-j)

longs 1 by (level+2) vector containing the lengths of
the components. longs is defined as (where
N is the level)
longs(1) = length of app. coef.(N)
longs(i) = length of det. coef.(N-i+2)
for i = 2,...,N+1
longs(N+2) = length(X).

Examples Localize Discontinuity with Nondecimated Wavelet Transform

Use fine-scale nondecimated wavelet transform coefficients to localize
a discontinuity.

Create signal consisting of a 1/2–hz sine wave sampled at 1 kHz with
discontinuities at 0.3 and 0.72 seconds.

t = linspace(0,1,1000);
x = 4*sin(4*pi*t);
x = x - sign(t - .3) - sign(.72 - t);
plot(t,x); xlabel('t'); ylabel('x');
grid on;
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Obtain the nondecimated wavelet transform of the input signal down to
level 4 using the Daubechies extremal phase wavelet with 2 vanishing
moments and the default whole-point symmetric extension mode.
Reconstruct a signal approximation based on the level-one wavelet
coefficients.

W = ndwt(x,4,'db2','mode','per');
d1 = indwt(W,'d',1);

Plot the original signal and the signal approximation to visualize how
the wavelet coefficients localize the discontinuities.

subplot(211);
plot(t,x); title('Original Signal');
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grid on;
subplot(212);
plot(t,d1,'linewidth',2); title('Wavelet Approximation -- Level 1');
grid on;

Specify Extension Mode for Nondecimated Wavelet
Transform

Specify an extension mode different from the default whole-point
symmetric extension.

Load the freqbrk signal and obtain the nondecimated wavelet
transform down to level 4 using the Daubechies extremal phase wavelet
with 2 vanishing moments. Use the periodic extension mode.
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load freqbrk;
W = ndwt(freqbrk,4,'db2','mode','per');

Nondecimated Wavelet Transform Using Specified
Decomposition and Reconstruction Filters

Specify the decomposition and reconstruction filters as a cell or
structure array.

Obtain the decomposition and reconstruction filters for the biorthogonal
spline wavelet with 3 vanishing moments in the reconstruction wavelet
and 5 vanishing moments in the decomposition wavelet. Create a cell
array with the scaling and wavelet filters and analyze the freqbrk
signal.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5');
WF = {LoD,HiD,LoR,HiR};
load freqbrk;
W = ndwt(freqbrk,4,WF);

Use a structure array to input the scaling and wavelet filters.

WF1 = struct('LoD',LoD,'HiD',HiD,'LoR',LoR,'HiR',HiR);
W1 = ndwt(freqbrk,4,WF1);

See Also dwtmode | indwt | waveinfo | wfilters | wmaxlev
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Purpose Nondecimated 2-D wavelet transform

Syntax WT = ndwt2(X,N,'wname')
WT = ndwt2(X,N,'wname','mode','ExtM')
WT = ndwt2(X,W,...)
WT = ndwt2(X,WF,...)

Description ndwt2 performs a multilevel 2-D nondecimated wavelet decomposition
using a particular wavelet ('wname') or the wavelet filters you specify.
The decomposition also uses the specified DWT extension mode (see
dwtmode).

WT = ndwt2(X,N,'wname') returns a structure which contains the
nondecimated wavelet transform of the vector X at the level N. N is a
positive integer and 'wname' is a string containing the wavelet name.
The default default extension mode is'sym'. For more information on
wname, see wfilters.

WT = ndwt2(X,N,'wname','mode','ExtM') uses the extension mode
specified in the string 'ExtM'.

WT is a structure with the fields shown in the table.

sizeINI Size of the two-dimensional array X

level Level of the decomposition

mode Name of the wavelet transform extension mode

filters Structure with 4 fields, LoD, HiD, LoR, HiR,
which contain the filters used for DWT
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dec 1 by (3*level+1) cell array containing the
coefficients of the decomposition. dec{1}
contains the coefficients of the approximation
and dec{j} (j = 2 to 3*level+1), contains the
coefficients of the details from level level to
level 1, three details by level (LH, HL and HH
where L is low and H is high)

sizes (level+1) by 2 array containing the size of the
components

IWT = ndwt2(X,W,...) specifies two wavelets (one for each direction)
with W = {'wname1','wname2'} or W is a structure with two fields
'w1', ’w2' containing strings, which are the names of wavelets, one
per direction.

Instead of one or two wavelets, you may specify four filters (two
for decomposition and two for reconstruction) or 2 x 4 filters (one
quadruplet per direction):

WT = ndwt2(X,WF,...) specifies four filters (two for decomposition and
two for reconstruction) or 2 x 4 filters (one quadruplet per direction). WF
is a cell array (1x4) or (2x4), {LoD,HiD,LoR,HiR}, or a structure with
the four fields 'LoD', 'HiD', 'LoR', 'HiR'.

Examples % Load original image.
load noiswom;

% Decompose X at level 2 using db1.
W1 = ndwt2(X,2,'db1')

W1 =

sizeINI: [96 96]
level: 2

filters: [1x1 struct]
mode: 'sym'
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dec: {7x1 cell}
sizes: [3x2 double]

% Decompose X at level 3 using db1 and periodic
% extension mode.
W2 = ndwt2(X,3,'db1','mode','per')

W2 =

sizeINI: [96 96]
level: 3

filters: [1x1 struct]
mode: 'per'
dec: {10x1 cell}

sizes: [4x2 double]

% Decompose X at level 3 using db1 for rows, and db2 for
% columns, using symmetric extension mode.
W3 = ndwt2(X,3,{'db1','db2'},'mode','sym')

W3 =

sizeINI: [96 96]
level: 3

filters: [1x1 struct]
mode: 'sym'
dec: {10x1 cell}

sizes: [4x2 double]

WF = W3.filters

WF =

LoD: {[0.7071 0.7071] [-0.1294 0.2241 0.8365 0.4830]}
HiD: {[-0.7071 0.7071] [-0.4830 0.8365 -0.2241 -0.1294]}
LoR: {[0.7071 0.7071] [0.4830 0.8365 0.2241 -0.1294]}
HiR: {[0.7071 -0.7071] [-0.1294 -0.2241 0.8365 -0.4830]}
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% Decompose X using filters given by WF.
W4 = ndwt2(X,3,WF,'mode','sym')

W4 =

sizeINI: [96 96]
level: 3

filters: [1x1 struct]
mode: 'sym'
dec: {10x1 cell}

sizes: [4x2 double]

See Also dwtmode | indwt2 | waveinfo | wfilters | wmaxlev
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Purpose Perform multisignal 1-D thresholding

Syntax Y = mswthresh(X,SORH,T)
Y = mswthresh(X,SORH,T,'c')
Y = mswthresh(X,'s',T)
Y = mswthresh(X,'h',T)

Description Y = mswthresh(X,SORH,T) returns soft (if SORH='s') or hard (if
SORH='h') T-thresholding of the input matrix X. T can be a single
value, a matrix of the same size as X or a vector. In this last case,
thresholding is performed rowwise and LT = length(T) must be such
that size(X,1) ≤ LT.

Y = mswthresh(X,SORH,T,'c') performs a columnwise thresholding
and size(X,2) ≤ LT.

Y = mswthresh(X,'s',T) returns Y = SIGN(X).(|X|-T)+, soft
thresholding is shrinkage.

Y = mswthresh(X,'h',T) returns Y = X.1_(|X|>T), hard thresholding
is cruder.

See Also mswden | mswcmp | wthresh | wden | wdencmp | wpdencmp
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Purpose Node ascendants

Syntax A = nodeasc(T,N)

Description nodeasc is a tree-management utility.

A = nodeasc(T,N) returns the indices of all the ascendants of the node
N in the tree T where N can be the index node or the depth and position
of the node. A is a column vector with A(1) = index of node N.

A = nodeasc(T,N,'deppos') is a matrix, which contains the depths
and positions of all ascendants. A(i,1) is the depth of the i-th
ascendant and A(i,2) is the position of the i-th ascendant.

The nodes are numbered from left to right and from top to bottom. The
root index is 0.

Examples % Create binary tree of depth 3.
t = ntree(2,3);
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).
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nodeasc(t,[2 2])
ans =

5
2
0

nodeasc(t,[2 2],'deppos')
ans =

2 2
1 1
0 0

See Also nodedesc | nodepar | wtreemgr
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Purpose Node descendants

Syntax D = nodedesc(T,N)
D = nodedesc(T,N,'deppos')

Description nodedesc is a tree-management utility.

D = nodedesc(T,N) returns the indices of all the descendants of the
node N in the tree T where N can be the index node or the depth and
position of node. D is a column vector with D(1) = index of node N.

D = nodedesc(T,N,'deppos') is a matrix that contains the depths and
positions of all descendants. D(i,1) is the depth of the i-th descendant
and D(i,2) is the position of the i-th descendant.

The nodes are numbered from left to right and from top to bottom. The
root index is 0.

Examples % Create binary tree of depth 3.
t = ntree(2,3);
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).
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% Node descendants.
nodedesc(t,2)
ans =

2
5
6

13
14

nodedesc(t,2,'deppos')
ans =

1 1
2 2
2 3
3 6
3 7

nodedesc(t,[1 1],'deppos')
ans =

1 1
2 2
2 3
3 6
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3 7

nodedesc(t,[1 1])
ans =

2
5
6

13
14

See Also nodeasc | nodepar | wtreemgr
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Purpose Recompose node

Syntax T = nodejoin(T,N)
T = nodejoin(T)
T = nodejoin(T,0)

Description nodejoin is a tree-management utility.

T = nodejoin(T,N) returns the modified tree T corresponding to a
recomposition of the node N.

The nodes are numbered from left to right and from top to bottom. The
root index is 0.

T = nodejoin(T) is equivalent to T = nodejoin(T,0).

Examples % Create binary tree of depth 3.
t = ntree(2,3);

% Plot tree t.
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).
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% Merge nodes of indices 4 and 5.
t = nodejoin(t,5);
t = nodejoin(t,4);
% Plot new tree t.
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

See Also nodesplt
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Purpose Node parent

Syntax F = nodepar(T,N)
F = nodepar(T,N,'deppos')

Description nodepar is a tree-management utility.

F = nodepar(T,N) returns the indices of the Äúparent(s)Äù of the
nodes N in the tree T where N can be a column vector containing the
indices of nodes or a matrix that contains the depths and positions of
nodes. In the last case, N(i,1) is the depth of the i-th node and N(i,2)
is the position of the i-th node.

F = nodepar(T,N,'deppos') is a matrix that contains the depths and
positions of returned nodes. F(i,1) is the depth of the i-th node and
F(i,2) is the position of the i-th node.

nodepar(T,0) or nodepar(T,[0,0]) returns -1.

nodepar(T,0,'deppos') or nodepar(T,[0,0],'deppos') returns
[-1,0].

The nodes are numbered from left to right and from top to bottom. The
root index is 0.

Examples % Create binary tree of depth 3.
t = ntree(2,3);
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)

1-328



nodepar

% Change Node Label from Depth_Position to Index
% (see the plot function).

% Nodes parent.
nodepar(t,[2 2],'deppos')

ans =
1 1

nodepar(t,[1;7;14])

ans =
0
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3
6

See Also nodeasc | nodedesc | wtreemgr
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Purpose Split (decompose) node

Syntax T = nodesplt(T,N)

Description nodesplt is a tree-management utility.

T = nodesplt(T,N) returns the modified tree T corresponding to the
decomposition of the node N.

The nodes are numbered from left to right and from top to bottom. The
root index is 0.

Examples % Create binary tree (tree of order 2) of depth 3.
t = ntree(2,3);

% Plot tree t.
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

% Split node of index 10.
t = nodesplt(t,10);

% Plot new tree t.
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plot(t)
% Change Node Label from Depth_Position to Index
% (see the plot function).

See Also nodejoin
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Purpose Determine nonterminal nodes

Syntax N = noleaves(T)
N = noleaves(T,'dp')

Description N = noleaves(T) returns the indices of nonterminal nodes of the tree T
(i.e., nodes that are not leaves). N is a column vector.

The nodes are ordered from left to right as in tree T.

N = noleaves(T,'dp') returns a matrix N, which contains the depths
and positions of nonterminal nodes.

N(i,1) is the depth of the i-th nonterminal node and
N(i,2) is the position of the i-th nonterminal node.

Examples % Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t=nodejoin(t,5);
t=nodejoin(t,4);
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).
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% List nonterminal nodes (index).
ntnodes_ind = noleaves(t)

ntnodes_ind =
0
1
2
3
6

% List nonterminal nodes (Depth_Position).
ntnodes_depo = noleaves(t,'dp')

ntnodes_depo =
0 0
1 0
1 1
2 0
2 3

See Also leaves
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Purpose Number of terminal nodes

Syntax NB = ntnode(T)

Description ntnode is a tree-management utility.

NB = ntnode(T) returns the number of terminal nodes in the tree T.

The nodes are numbered from left to right and from top to bottom. The
root index is 0.

Examples % Create binary tree (tree of order 2) of depth 3.
t = ntree(2,3);

% Plot tree t.
plot(t)

% Number of terminal nodes.
ntnode(t)

ans =
8

See Also wtreemgr
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Purpose NTREE constructor

Syntax T = ntree(ORD,D)
T = ntree
T = ntree(2,0)
T = ntree(ORD)
T = ntree(ORD,0)
T = ntree(ORD,D,S)
T = ntree(ORD,D,S,U)

Description T = ntree(ORD,D) returns an NTREE object, which is a complete tree
of order ORD and depth D.

T = ntree is equivalent to T = ntree(2,0).

T = ntree(ORD) is equivalent to T = ntree(ORD,0).

With T = ntree(ORD,D,S) you can set a “split scheme” for nodes. The
split scheme field S is a logical array of size ORD by 1.

The root of the tree can be split and it has ORD children. You can split
the j-th child if S(j) = 1.

Each node that you can split has the same property as the root node.

With T = ntree(ORD,D,S,U) you can, in addition, set a userdata field.

Inputs can be given in another way:

T = ntree('order',ORD,'depth',D,'spsch',S,'ud',U). For
“missing” inputs the defaults are ORD = 2 , D = 0 , S =
ones([1:ORD]) , U = {}.

[T,NB] = ntree( ... ) returns also the number of terminal nodes
(leaves) of T.

For more information on object fields, type help ntree/get.

Class NTREE (Parent class: WTBO)
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Fields

wtbo Parent object

order Tree order

depth Tree depth

spsch Split scheme for nodes

tn Column vector with terminal node indices

Examples % Create binary tree (tree of order 2) of depth 3.
t2 = ntree(2,3);

% Plot tree t2.
plot(t2)

% Create a quadtree (tree of order 4) of depth 2.
t4 = ntree(4,2,[1 1 0 1]);
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% Plot tree t4.
plot(t4)

% Split and merge some nodes using the gui
% generated by plot (see the plot function).
% The figure becomes:
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See Also wtbo
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Purpose Orthogonal wavelet filter set

Syntax [Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(W)

Description [Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(W) computes the four filters
associated with the scaling filter W corresponding to a wavelet:

Lo_D Decomposition low-pass filter

Hi_D Decomposition high-pass filter

Lo_R Reconstruction low-pass filter

Hi_R Reconstruction high-pass filter

For an orthogonal wavelet, in the multiresolution framework, we start
with the scaling function ϕ and the wavelet function ψ. One of the
fundamental relations is the twin-scale relation:

1
2 2
 

x
w x nn

n Z

⎛
⎝⎜

⎞
⎠⎟

= −
∈
∑ ( )

All the filters used in dwt and idwt are intimately related to the

sequence ( )wn n Z∈ . Clearly if ϕ is compactly supported, the sequence
(wn) is finite and can be viewed as a FIR filter. The scaling filter W is

• A low-pass FIR filter

• Of length 2N

• Of sum 1

• Of norm

For example, for the db3 scaling filter,

load db3
db3
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db3 =
0.2352 0.5706 0.3252 -0.0955 -0.0604 0.0249

sum(db3)
ans =

1.000
norm(db3)

ans =
0.7071

From filter W, we define four FIR filters, of length 2N and norm 1,
organized as follows:

Filters Low-Pass High-Pass

Decomposition Lo_D Hi_D

Reconstruction Lo_R Hi_R

The four filters are computed using the following scheme:

where qmf is such that Hi_R and Lo_R are quadrature mirror filters
(i.e., Hi_R(k) = (-1)kLo_R(2N + 1 - k), for k = 1, 2, ˜, 2N), and
where wrev flips the filter coefficients. So Hi_D and Lo_D are also
quadrature mirror filters. The computation of these filters is performed
using orthfilt.
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Examples % Load scaling filter.
load db8; w = db8;
subplot(421); stem(w);
title('Original scaling filter');

% Compute the four filters.
[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(w);
subplot(423); stem(Lo_D);
title('Decomposition low-pass filter');
subplot(424); stem(Hi_D);
title('Decomposition high-pass filter');
subplot(425); stem(Lo_R);
title('Reconstruction low-pass filter');
subplot(426); stem(Hi_R);
title('Reconstruction high-pass filter');

% Check for orthonormality.
df = [Lo_D;Hi_D];
rf = [Lo_R;Hi_R];
id = df*df'

id =
1.0000 0

0 1.0000

id = rf*rf'

id =
1.0000 0

0 1.0000

% Check for orthogonality by dyadic translation, for example:
df = [Lo_D 0 0;Hi_D 0 0];
dft = [0 0 Lo_D; 0 0 Hi_D];
zer = df*dft'

zer =
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1.0e-12 *
-0.1883 0.0000
-0.0000 -0.1883

% High- and low-frequency illustration.
fftld = fft(Lo_D); ffthd = fft(Hi_D);
freq = [1:length(Lo_D)]/length(Lo_D);
subplot(427); plot(freq,abs(fftld));
title('Transfer modulus: low-pass');
subplot(428); plot(freq,abs(ffthd));
title('Transfer modulus: high-pass')
% Editing some graphical properties,
% the following figure is generated.
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References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference
series in applied mathematics, SIAM Ed. pp. 117–119, 137, 152.

See Also biorfilt | qmf | wfilters
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Purpose Order terminal nodes of binary wavelet packet tree

Syntax [Tn_Pal,Tn_Seq] = otnodes(WPT)
[Tn_Pal,Tn_Seq,I,J] = otnodes(WPT)
[DP_Pal,DP_Seq] = otnodes(WPT,'dp')

Description [Tn_Pal,Tn_Seq] = otnodes(WPT) returns the terminal nodes of the
binary wavelet packet tree, WPT, in Paley (natural) ordering, Tn_Pal,
and sequency (frequency) ordering, Tn_Seq. Tn_Pal and Tn_Seq are
N-by-1 column vectors where N is the number of terminal nodes.

[Tn_Pal,Tn_Seq,I,J] = otnodes(WPT) returns the permutations of
the terminal node indices such that Tn_Seq = Tn_Pal(I) and Tn_Pal
= Tn_Seq(J).

[DP_Pal,DP_Seq] = otnodes(WPT,'dp') returns the Paley and
frequency-ordered terminal nodes in node depth-position format.
DP_Pal and DP_Seq are N-by-2 matrices. The first column contains the
depth index, and the second column contains the position index.

Input
Arguments

WPT

Binary wavelet packet tree. You can use treeord to determine the
order of your wavelet packet tree.

dp

String variable indicating that the Paley-ordered or sequency-ordered
nodes are returned in depth-position format.

Output
Arguments

Tn_Pal

Terminal nodes in Paley (natural) ordering

Tn_Seq

Terminal nodes in sequency ordering

DP_Pal
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Paley-ordered terminal nodes in depth-position format. This output
argument only applies when you use the 'dp' input argument.

DP_Seq

Sequency-ordered terminal nodes in depth-position format. This output
argument only applies when you use the 'dp' input argument.

Definitions Paley (Natural) and Sequency (Frequency) Ordering

The discrete wavelet packet transform iterates on both approximation
and detail coefficients at each level. In this transform, A denotes the
lowpass (approximation) filter followed by downsampling. D denotes
the highpass (detail) filter followed by downsampling. The following
figure represents a wavelet packet transform in Paley ordering acting
on a time series of length 8. The transform has a depth of two.

x(1)  x(2) x(3) x(4) x(5) x(6) x(7) x(8)

A(1) A(2) A(3) A(4) D(1) D(2) D(3) D(4)

AA(1) AA(2) DA(1) DA(2) AD(1) AD(2) DD(1) DD(2)
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Because of aliasing introduced by downsampling, the frequency content
extracted by the operator AD is higher than the frequency content
extracted by the DD operator. Therefore, the terminal nodes in
frequency (sequency) order are: AA,DA,DD,AD. The terminal nodes in
Paley order have the following indices: 3,4,5,6. The frequency order has
the indices: 3,4,6,5.

Examples Order terminal nodes with Paley and frequency ordering:

x = randn(8,1);
wpt = wpdec(x,2,'haar');
[Tn_Pal,Tn_Seq] = otnodes(wpt);
% Tn_Pal is [3 4 5 6]
% Tn_Seq is [3 4 6 5]

Return permutations for Paley and frequency ordering:

load noisdopp;
wpt = wpdec(noisdopp,6,'sym4');
[Tn_Pal,Tn_Seq,I,J] = otnodes(wpt);
isequal(Tn_Seq(J),Tn_Pal)
isequal(Tn_Seq,Tn_Pal(I))

Order terminal nodes by depth and position:

x = randn(8,1);
wpt = wpdec(x,2,'haar');
[DP_Pal,DP_Seq] = otnodes(wpt,'dp');

Order terminal nodes from a modified wavelet packet tree:

t = wptree(2,2,rand(1,512),'haar');
t = wpsplt(t,4);
t = wpsplt(t,5);
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t = wpsplt(t,10);
plot(t);
[tn_Pal,tn_Seq,I,J] = otnodes(t);

References Wickerhauser, M.V. Lectures on Wavelet Packet Algorithms, Technical
Report, Washington University, Department of Mathematics, 1992.

See Also leaves | treeord
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Purpose Build wavelet from pattern

Syntax [PSI,XVAL,NC] = pat2cwav(YPAT,METHOD,POLDEGREE,REGULARITY)

Description [PSI,XVAL,NC] = pat2cwav(YPAT,METHOD,POLDEGREE,REGULARITY)
computes an admissible wavelet for CWT (given by XVAL and PSI)
adapted to the pattern defined by the vector YPAT, and of norm equal
to 1.

The underlying x-values pattern is set to

xpat = linspace(0,1,length(YPAT))

The constant NC is such that NC*PSI approximates YPAT on the interval
[0,1] by least squares fitting using

• a polynomial of degree POLDEGREE when METHOD is equal to
'polynomial'

• a projection on the space of functions orthogonal to constants when
METHOD is equal to 'orthconst'

The REGULARITY parameter defines the boundary constraints at the
points 0 and 1. Allowable values are 'continuous', 'differentiable',
and 'none'.

When METHOD is equal to 'polynomial'

• if REGULARITY is equal to 'continuous', POLDEGREE must be greater
than or equal to 3.

• if REGULARITY is equal to 'differentiable', POLDEGREE must be
greater than or equal to 5.

Examples The principle for designing a new wavelet for CWT is to approximate
a given pattern using least squares optimization under constraints
leading to an admissible wavelet well suited for the pattern detection
using the continuous wavelet transform (see Misiti et al.).

load ptpssin1;
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plot(X,Y), title('Original Pattern')

[psi,xval,nc] = pat2cwav(Y, 'polynomial',6, 'continuous') ;
plot(X,Y,'-',xval,nc*psi,'--'),
title('Original Pattern and Adapted Wavelet (dashed line)')

You can check that psi satisfies the definition of a wavelet by noting
that it integrates to zero and that its L2 norm is equal to 1.

dx = xval(2)-xval(1);
Mu = sum(psi*dx)
L2norm = sum(abs(psi).^2*dx)
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References Misiti, M., Y. Misiti, G. Oppenheim, J.-M. Poggi (2003), “Les ondelettes
et leurs applications,” Hermes.
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Purpose Plot tree GUI

Syntax plot(T)
plot(T,FIG)

Description plot is a graphical tree-management utility.

plot(T) plots the tree T.

The figure that contains the tree is a GUI tool. It lets you change
the Node Label to Depth_Position or Index, and Node Action to
Split-Merge or Visualize.

The default values are Depth_Position and Visualize.

You can click the nodes to execute the current Node Action.

plot(T,FIG) plots the tree T in the figure whose handle is FIG. This
figure was already used to plot a tree, for example using the command

FIG = plot(T)

After some split or merge actions, you can get the new tree using
its parent figure handle. The following syntax lets you perform this
functionality:

NEWT = plot(T,'read',FIG)

In fact, the first argument is dummy. The most general syntax is

NEWT = plot(DUMMY,'read',FIG)

where DUMMY is any object parented by an NTREE object. More
generally, DUMMY can be any object constructor name returning an
NTREE parented object. For example:

NEWT = plot(ntree,'read',FIG)
NEWT = plot(dtree,'read',FIG)
NEWT = plot(wptree,'read',FIG)
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Examples % Create a wavelet packets tree (1-D)
load noisbloc
x = noisbloc;
t = wpdec(x,2,'db2');

% Plot tree t.
plot(t)

% Change Node Label from Depth_Position to Index.
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% Click the node (3). You get the following figure.
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% Change Node Action from Visualize to Split_Merge.

% Merge the node (2) and split the node (3).
% Change Node Action from Split_Merge to Visualize.
% Click the node (7). You obtain the following figure,
% which represents the wavelet decomposition at level 3.
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% Create a wavelet packets tree (2-D)
load woman2
t = wpdec2(X,1,'sym4');

% Plot tree t.
plot(t)

% Change Node Label from Depth_Position to Index.
% Click the node (1). You get the following figure.
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Purpose Plot dual-tree or double-density wavelet transform

Syntax plotdt(wt)

Description plotdt(wt) plots the coefficients of the 1-D or 2-D wavelet filter bank
decomposition, wt.

Input
Arguments

wt - Wavelet transform
structure

Wavelet transform, returned as a structure from dddtree or dddtree2
with these fields:

type - Type of wavelet decomposition (filter bank)
'dwt' | 'ddt' | 'realdt' | 'cplxdt' | 'realdddt' | 'cplxdddt'

Type of wavelet decomposition (filter bank), specified as one of 'dwt',
'ddt', 'realdt', 'cplxdt',, 'realdddt', or 'cplxdddt'. 'realdt'
and 'realdddt' are only valid for the 2-D wavelet transform. The
type, 'dwt', is a critically sampled (nonredundant) discrete wavelet
transform for 1-D data or 2-D images. The other decomposition types
are oversampled wavelet transforms. For details about transform types
see dddtree for 1-D wavelet transforms and dddtree2 for 2-D wavelet
transforms.

level - Level of the wavelet decomposition
positive integer

Level of the wavelet decomposition, specified as a positive integer.

filters - Decomposition (analysis) and reconstruction (synthesis)
filters
structure

Decomposition (analysis) and reconstruction (synthesis) filters, specified
as a structure with these fields:

Fdf - First-stage analysis filters
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matrix | cell array

First level decomposition filters specified as an N-by-2 or N-by-3 matrix
for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2
or N-by-3 matrices for dual-tree wavelet transforms. The matrices
are N-by-3 for the double-density wavelet transforms. For an N-by-2
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second column is the wavelet (highpass) filter. For an N-by-3
matrix, the first column of the matrix is the scaling (lowpass) filter and
the second and third columns are the wavelet (highpass) filters. For
the dual-tree transforms, each element of the cell array contains the
first-stage analysis filters for the corresponding tree.

Df - Analysis filters for levels > 1
matrix | cell array

Analysis filters for levels > 1, specified as an N-by-2 or N-by-3 matrix
for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2
or N-by-3 matrices for dual-tree wavelet transforms. The matrices
are N-by-3 for the double-density wavelet transforms. For an N-by-2
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second column is the wavelet (highpass) filter. For an N-by-3
matrix, the first column of the matrix is the scaling (lowpass) filter
and the second and third columns are the wavelet (highpass) filters.
For the dual-tree transforms, each element of the cell array contains
the analysis filters for the corresponding tree.

Frf - First-level reconstruction filters
matrix | cell array

First-level reconstruction filters, specified as an N-by-2 or N-by-3
matrix for single-tree wavelet transforms, or a 1-by-2 cell array of
two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The
matrices are N-by-3 for the double-density wavelet transforms. For an
N-by-2 matrix, the first column of the matrix is the scaling (lowpass)
filter and the second column is the wavelet (highpass) filter. For an
N-by-3 matrix, the first column of the matrix is the scaling (lowpass)
filter and the second and third columns are the wavelet (highpass)
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filters. For the dual-tree transforms, each element of the cell array
contains the first-stage synthesis filters for the corresponding tree.

Rf - Reconstruction filters for levels > 1
matrix | cell array

Reconstruction filters for levels > 1, specified as an N-by-2 or N-by-3
matrix for single-tree wavelet transforms, or a 1-by-2 cell array of
two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The
matrices are N-by-3 for the double-density wavelet transforms. For an
N-by-2 matrix, the first column of the matrix is the scaling (lowpass)
filter and the second column is the wavelet (highpass) filter. For an
N-by-3 matrix, the first column of the matrix is the scaling (lowpass)
filter and the second and third columns are the wavelet (highpass)
filters. For the dual-tree transforms, each element of the cell array
contains the first-stage synthesis filters for the corresponding tree.

cfs - Wavelet transform coefficients
cell array of matrices

Wavelet transform coefficients, specified as a 1-by-(level+1) cell
array of matrices. The size and structure of the matrix elements of
the cell array depend on the type of wavelet transform and whether
the decomposition is 1-D or 2-D. For a 1-D wavelet transform, the
coefficients are organized by transform type as follows:

• 'dwt' — cfs{j}

- j = 1,2,..., level is the level.

- cfs{level+1} are the lowpass, or scaling, coefficients.

• 'ddt' — cfs{j}(:,:,k)

- j = 1,2,..., level is the level.

- k = 1,2 is the wavelet filter.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdt' — cfs{j}(:,:,m)
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- j = 1,2,..., level is the level.

- m = 1,2 are the real and imaginary parts.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'realdddt' — cfs{j}(:,:,d,k)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- k = 1,2 is the wavelet transform tree.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdddt' — cfs{j}(:,:,d,k,m)

- j = 1,2,..., level is the level.

- k = 1,2 is the wavelet transform tree.

- m = 1,2 are the real and imaginary parts.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

For a 2-D wavelet transform, the coefficients are organized by transform
type as follows:

• 'dwt' — cfs{j}(:,:,d)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'ddt' — cfs{j}(:,:,d)

- j = 1,2,..., level is the level.

- d = 1,2,3,4,5,6,7,8 is the orientation.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'realddt' — cfs{j}(:,:,d,k)

- j = 1,2,..., level is the level.
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- d = 1,2,3 is the orientation.

- k = 1,2 is the wavelet transform tree.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdt' — cfs{j}(:,:,d,k,m)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- k = 1,2 is the wavelet transform tree.

- m = 1,2 are the real and imaginary parts.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'realdddt' — cfs{j}(:,:,d,k)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- k = 1,2 is the wavelet transform tree.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdddt' — cfs{j}(:,:,d,k,m)

- j = 1,2,..., level is the level.

- d = 1,2,3 is the orientation.

- k = 1,2 is the wavelet transform tree.

- m = 1,2 are the real and imaginary parts.

- cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

Examples Plot Complex Dual-Tree Wavelet Transform of 1-D Signal

Plot the complex dual-tree wavelet transform of the noisy Doppler
signal.

Load the noisy Doppler signal. Obtain the complex dual-tree wavelet
transform down to level 4.
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load noisdopp;
wt = dddtree('cplxdt',noisdopp,4,'dtf1');

Plot the coefficients.

plotdt(wt)

Plot Complex Oriented Dual-Tree Wavelet Transform of 2-D
Image

Plot the complex oriented dual-tree wavelet transform of an image.

Load the “xbox” image. Obtain the complex oriented dual-tree wavelet
transform down to level 3.

load xbox;
wt = dddtree2('cplxdt',xbox,3,'dtf1');

Plot the coefficients.

plotdt(wt)

Select the level-one detail coefficients from the drop-down list in the
lower left corner.
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See Also dddtree | dddtree2 | dddtreecfs

Related
Examples

• “Analytic Wavelets Using the Dual-Tree Wavelet Transform”

Concepts • “Critically Sampled and Oversampled Wavelet Filter Banks”
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Purpose Quadrature mirror filter

Syntax Y = qmf(X,P)
Y = qmf(X)
Y = qmf(X,0)

Description Y = qmf(X,P) changes the signs of the even index entries of the
reversed vector filter coefficients X if P is even. If P is odd the same holds
for odd index entries. Y = qmf(X) is equivalent to Y = qmf(X,0).

Let x be a finite energy signal. Two filters F0 and F1 are quadrature
mirror filters (QMF) if, for any x,

y y x0
2

1
2 2+ =

where y0 is a decimated version of the signal x filtered with F0 so y0
defined by x0 = F0(x) and y0(n) = x0(2n), and similarly, y1 is defined by x1
= F1(x) and y1(n) = x1(2n). This property ensures a perfect reconstruction
of the associated two-channel filter banks scheme (see Strang-Nguyen
p. 103).

For example, if F0 is a Daubechies scaling filter and F1 = qmf(F0), then
the transfer functions F0(z) and F1(z) of the filters F0 and F1 satisfy the
condition (see the example for db10):

| ( )| | ( )|F z F z0
2

1
2 1+ =

Examples % Load scaling filter associated with an orthogonal wavelet.
load db10;
subplot(321); stem(db10); title('db10 low-pass filter');

% Compute the quadrature mirror filter.
qmfdb10 = qmf(db10);
subplot(322); stem(qmfdb10); title('QMF db10 filter');

% Check for frequency condition (necessary for orthogonality):
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% abs(fft(filter))^2 + abs(fft(qmf(filter))^2 = 1 at each
% frequency.
m = fft(db10);
mt = fft(qmfdb10);
freq = [1:length(db10)]/length(db10);
subplot(323); plot(freq,abs(m));
title('Transfer modulus of db10')
subplot(324); plot(freq,abs(mt));
title('Transfer modulus of QMF db10')
subplot(325); plot(freq,abs(m).^2 + abs(mt).^2);
title('Check QMF condition for db10 and QMF db10')
xlabel(' abs(fft(db10))^2 + abs(fft(qmf(db10))^2 = 1')

% Editing some graphical properties,
% the following figure is generated.

% Check for orthonormality.
df = [db10;qmfdb10]*sqrt(2);
id = df*df'
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id =
1.0000 0.0000
0.0000 1.0000

References Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks,
Wellesley-Cambridge Press.
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Purpose Reverse biorthogonal spline wavelet filters

Syntax [RF,DF] = rbiowavf(W)

Description [RF,DF] = rbiowavf(W) returns two scaling filters associated with the
biorthogonal wavelet specified by the string W.

W = 'rbioNr.Nd' where possible values for Nr and Nd are

Nr = 1 Nd = 1 , 3 or 5

Nr = 2 Nd = 2 , 4 , 6 or 8

Nr = 3 Nd = 1 , 3 , 5 , 7 or 9

Nr = 4 Nd = 4

Nr = 5 Nd = 5

Nr = 6 Nd = 8

The output arguments are filters.

• RF is the reconstruction filter.

• DF is the decomposition filter.

Examples % Set reverse biorthogonal spline wavelet name.
wname = 'rbio2.2';

% Compute the two corresponding scaling filters,
% rf is the reconstruction scaling filter and
% df is the decomposition scaling filter.
[rf,df] = rbiowavf(wname)

rf =
-0.1250 0.2500 0.7500 0.2500 -0.1250

df =
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0.2500 0.5000 0.2500

See Also biorfilt | waveinfo
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Purpose Read values of WPTREE

Syntax VARARGOUT = read(T,VARARGIN)

Description VARARGOUT = read(T,VARARGIN) is the most general syntax to read one
or more property values from the fields of a WPTREE object .

The different ways to call the read function are

PropValue = read(T,'PropName') or
PropValue = read(T,'PropName','PropParam')

or any combination of the previous syntaxes:

[PropValue1,PropValue2, ] =
read(T,'PropName1','PropParam1','PropName2','PropParam2', )

where 'PropParam' is optional.

The valid choices for 'PropName' and 'PropParam' are listed in this
table.

PropName PropParam

'ent', 'ento' or 'sizes'
(see wptree)

Without 'PropParam' or with
'PropParam' = Vector of node indices,
PropValue contains the entropy (or
optimal entropy, or size) of the tree
nodes in ascending node index order.

'cfs' With 'PropParam' = One terminal node
index. cfs = read(T,'cfs',NODE) is
equivalent to cfs = read(T,’data’,NODE)
and returns the coefficients of the
terminal node NODE.
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PropName PropParam

'entName', 'entPar',
'wavName' (see wptree) or
'allcfs'

Without 'PropParam'. cfs =
read(T,'allcfs') is equivalent to
cfs = read(T,'data'). PropValue
contains the desired information in
ascending node index order of the tree
nodes.

'wfilters' (see wfilters) Without 'PropParam' or with
'PropParam' = 'd','r','l','h'.

'data' Without 'PropParam' or with
'PropParam' = One terminal node
index or 'PropParam' = Column
vector of terminal node indices.In this
last case, PropValue is a cell array.
Without 'PropParam', PropValue
contains the coefficients of the tree
nodes in ascending node index order.

Examples % Create a wavelet packet tree.
x = rand(1,512);
t = wpdec(x,3,'db3');
t = wpjoin(t,[4;5]);
plot(t);

% Click the node (3,0), (see the plot function).
l% Read values.

sAll = read(t,'sizes');
sNod = read(t,'sizes',[0,4,5]);
eAll = read(t,'ent');
eNod = read(t,'ent',[0,4,5]);
dAll = read(t,'data');
dNod = read(t,'data',[4;5]);
[lo_D,hi_D,lo_R,hi_R] = read(t,'wfilters');
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[lo_D,lo_R,hi_D,hi_R] = read(t,'wfilters','l','wfilters','h');
[ent,ento,cfs4,cfs5] = read(t,'ent','ento','cfs',4,'cfs',5);

See Also disp | get | set | wptree | write
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Purpose Read wavelet packet decomposition tree from figure

Syntax T = readtree(F)

Description T = readtree(F) reads the wavelet packet decomposition tree from the
figure whose handle is F.

Examples % Create a wavelet packet tree.
x = sin(8*pi*[0:0.005:1]);
t = wpdec(x,3,'db2');

% Display the generated tree in a Wavelet Packet 1-D GUI window.
fig = drawtree(t);

%-------------------------------------
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% Use the GUI to split or merge Nodes.
%-------------------------------------

t = readtree(fig);
plot(t)

% Click the node (3,0), (see the plot function).
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See Also drawtree
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Purpose Scale to frequency

Syntax F = scal2frq(A,'wname',DELTA)
scal2frq(A,'wname')
scal2frq(A,'wname',1)

Description F = scal2frq(A,'wname',DELTA) returns the pseudo-frequencies
corresponding to the scales given by A, the wavelet function 'wname'
(see wavefun for more information) and the sampling period DELTA.

scal2frq(A,'wname') is equivalent to scal2frq(A,'wname',1).

One of the most frequently asked questions is “How does one map a
scale, for a given wavelet and a sampling period, to a kind of frequency?”

The answer can only be given in a broad sense and it’s better to speak
about the pseudo-frequency corresponding to a scale.

A way to do it is to compute the center frequency, Fc, of the wavelet and
to use the following relationship.

F
F

aa
c=
⋅ Δ

where

• a is a scale.

• Δ is the sampling period.

• Fc is the center frequency of a wavelet in Hz.

• Fa is the pseudo-frequency corresponding to the scale a, in Hz.

The idea is to associate with a given wavelet a purely periodic signal
of frequency Fc. The frequency maximizing the fft of the wavelet
modulus is Fc. The function centfrq can be used to compute the center
frequency and it allows the plotting of the wavelet with the associated
approximation based on the center frequency. The following figure
(Center Frequencies for Real and Complex Wavelets on page 1-378)
shows some examples generated using the centfrq function.
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• Four real wavelets: Daubechies wavelets of order 2 and 7, coiflet of
order 1, and the Gaussian derivative of order 4.

• Two complex wavelets: the complex Gaussian derivative of order 6
and a Shannon complex wavelet.
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Center Frequencies for Real and Complex Wavelets
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As you can see, the center frequency based approximation captures
the main wavelet oscillations. So the center frequency is a convenient
and simple characterization of the leading dominant frequency of the
wavelet.

If we accept to associate the frequency Fc to the wavelet function then,
when the wavelet is dilated by a factor a, this center frequency becomes
Fc / a. Lastly, if the underlying sampling period is Δ, it is natural to
associate to the scale a the frequency

F
F

aa
c=
⋅ Δ

The function scal2frq computes this correspondence.

To illustrate the behavior of this procedure, let us consider the following
simple test. We generate sine functions of sensible frequencies F0.
For each function, we shall try to detect this frequency by a wavelet
decomposition followed by a translation of scale to frequency. More
precisely, after a discrete wavelet decomposition, we identify the scale
a* corresponding to the maximum value of the energy of the coefficients.
The translated frequency F* is then given by

scal2frq(a_star,'wname',sampling_period)

The F* values are close to the chosen F0. The plots at the end of example
2 presents the periods instead of frequencies. If we change slightly the
F0 values, the results remain satisfactory.

Examples Example 1

% Set sampling period and wavelet name.
delta = 0.1; wname = 'coif3';

% Define scales.
amax = 7; a = 2.^[1:amax];

% Compute associated pseudo-frequencies.
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f = scal2frq(a,wname,delta);

% Compute associated pseudo-periods.
per = 1./f;

% Display information.
disp(' Scale Frequency Period')
disp([a' f' per'])

Scale Frequency Period

2.0000 3.5294 0.2833
4.0000 1.7647 0.5667
8.0000 0.8824 1.1333

16.0000 0.4412 2.2667
32.0000 0.2206 4.5333
64.0000 0.1103 9.0667

128.0000 0.0551 18.1333

Example 2

% Set sampling period and wavelet name.
delta = 0.1; wname = 'coif3';

% Define scales.
amax = 7;
a = 2.^[1:amax];

% Compute associated pseudo-frequencies.
f = scal2frq(a,wname,delta);

% Compute associated pseudo-periods.
per = 1./f;

% Plot pseudo-periods versus scales.
subplot(211), plot(a,per)
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title(['Wavelet: ',wname, ', Sampling period: ',num2str(delta)])
xlabel('Scale')
ylabel('Computed pseudo-period')

% For each scale 2^i:
% - generate a sine function of period per(i);
% - perform a wavelet decomposition;
% - identify the highest energy level;
% - compute the detected pseudo-period.

for i = 1:amax
% Generate sine function of period
% per(i) at sampling period delta.
t = 0:delta:100;
x = sin((t.*2*pi)/per(i));
% Decompose x at level 9.
[c,l] = wavedec(x,9,wname);

% Estimate standard deviation of detail coefficients.
stdc = wnoisest(c,l,[1:amax]);
% Compute identified period.
[y,jmax] = max(stdc);
idper(i) = per(jmax);

end

% Compare the detected and computed pseudo-periods.
subplot(212), plot(per,idper,'o',per,per)
title('Detected vs computed pseudo-period')
xlabel('Computed pseudo-period')
ylabel('Detected pseudo-period')
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Example 3

This example demonstrates that, starting from the periodic function
x(t) = cos(5t), the scal2frq function translates the scale
corresponding to the maximum value of the CWT coefficients to a
pseudo-frequency (0.795), which is near to the true frequency (5/(2*pi)
=~ 0.796).

% Set wavelet name, interval and number of samples.
wname = 'db10';
A = -64; B = 64; P = 224;

% Compute the sampling period and the sampled function,
% and the true frequency.
delta = (B-A)/(P-1);
t = linspace(A,B,P);
omega = 5; x = cos(omega*t);
freq = omega/(2*pi);
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% Set scales and use scal2frq to compute the array
% of pseudo-frequencies.
scales = [0.25:0.25:3.75];
TAB_PF = scal2frq(scales,wname,delta);

% Compute the nearest pseudo-frequency
% and the corresponding scale.
[dummy,ind] = min(abs(TAB_PF-freq));
freq_APP = TAB_PF(ind);
scale_APP = scales(ind);

% Continuous analysis and plot.
str1 = ['224 samples of x = cos(5t) on [-64,64] - ' ...

'True frequency = 5/(2*pi) =~ ' num2str(freq,3)];
str2 = ['Array of pseudo-frequencies and scales: '];
str3 = [num2str([TAB_PF',scales'],3)];
str4 = ['Pseudo-frequency = ' num2str(freq_APP,3)];
str5 = ['Corresponding scale = ' num2str(scale_APP,3)];
figure; cwt(x,scales,wname,'plot'); ax = gca; colorbar
axTITL = get(ax,'title');
axXLAB = get(ax,'xlabel');
set(axTITL,'String',str1)
set(axXLAB,'String',[str4,' - ' str5])
clc ; disp(char(' ',str1,' ',str2,str3,' ',str4,str5))

224 samples of x = cos(5t) on [-64,64] -
True frequency = 5/(2*pi) =~ 0.796

Array of pseudo-frequencies and scales:
4.77 0.25
2.38 0.5
1.59 0.75
1.19 1

0.954 1.25
0.795 1.5
0.681 1.75
0.596 2
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. . . .
0.341 3.5
0.318 3.75

Pseudo-frequency = 0.795
Corresponding scale = 1.5

Example 4

This example demonstrates that, starting from the periodic function
x(t) = 5*sin(5t)+3*sin(2t)+2*sin(t), the scal2frq function
translates the scales corresponding to the maximum values of the CWT
coefficients to pseudo-frequencies ([0.796 0.318 0.159]), which are
near to the true frequencies ([5 2 1] / (2*pi) =~ [0.796 0.318
0.159]).

% Set wavelet name,interval and number of samples.
wname = 'morl';
A = 0; B = 64; P = 500;
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% Compute the sampling period and the sampled function,
% and the true frequencies.
t = linspace(A,B,P);
delta = (B-A)/(P-1);
tab_OMEGA = [5,2,1];
tab_FREQ = tab_OMEGA/(2*pi);
tab_COEFS = [5,3,2];
x = zeros(1,P);
for k = 1:3;

x = x+tab_COEFS(k)*sin(tab_OMEGA(k)*t);
end

% Set scales and use scal2frq to compute the array
% of pseudo-frequencies.
scales = [1:1:60];
tab_PF = scal2frq(scales,wname,delta);

% Compute the nearest pseudo-frequencies
% and the corresponding scales.
for k=1:3

[dummy,ind] = min(abs(tab_PF-tab_FREQ(k)));
PF_app(k) = tab_PF(ind);
SC_app(k) = scales(ind);

end

% Continuous analysis and plot.
str1 = char( ...

'500 samples of x = 5*sin(5t)+3*sin(2t)+2*sin(t) on [0,64]',...
['True frequencies (in Hz): [5 2 1]/(2*pi) =~ [' ...
num2str(tab_FREQ,3) ']' ] ...
);

str2 = ['Array of pseudo-frequencies and scales: '];
str3 = [num2str([tab_PF',scales'],3)];
str4 = ['Pseudo-frequencies = ' num2str(PF_app,3)];
str5 = ['Corresponding scales = ' num2str(SC_app,3)];
figure; cwt(x,scales,wname,'plot'); ax = gca; colorbar
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axTITL = get(ax,'title');
axXLAB = get(ax,'xlabel');
set(axTITL,'String',str1)
set(axXLAB,'String',char(str4, str5))
clc; disp(char(' ',str1,' ',str2,str3,' ',str4,str5))

500 samples of x = 5*sin(5t)+3*sin(2t)+2*sin(t) on [0,64]
True frequencies (in Hz): [5 2 1]/(2*pi) =~ [0.796 0.318 0.159]

Array of pseudo-frequencies and scales:
6.33 1
3.17 2
2.11 3
1.58 4
1.27 5
1.06 6

0.905 7
0.792 8
0.704 9
0.633 10

. . . .

. . . .

0.122 52
0.12 53

0.117 54
0.115 55
0.113 56
0.111 57
0.109 58
0.107 59
0.106 60
Pseudo-frequencies = 0.792 0.317 0.158
Corresponding scales = 8 20 40
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References Abry, P. (1997), Ondelettes et turbulence. Multirésolutions, algorithmes
de décomposition, invariance d’échelles, Diderot Editeur, Paris.

See Also centfrq
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Purpose WPTREE field contents

Syntax T =
set(T,'FieldName1',FieldValue1,'FieldName2',FieldValue2,

...)

Description T =
set(T,'FieldName1',FieldValue1,'FieldName2',FieldValue2,
...) sets the content of the specified fields for the WPTREE object T.

For the fields that are objects or structures, you can set the subfield
contents, giving the name of these subfields as 'FieldName' values.

The valid choices for 'FieldName' are

'dtree' DTREE parent object

'wavInfo' Structure (wavelet information)

The fields of the wavelet information structure, 'wavInfo', are also
valid for 'FieldName':

'wavName' Wavelet name

'Lo_D' Low Decomposition filter

'Hi_D' High Decomposition filter

'Lo_R' Low Reconstruction filter

'Hi_R' High Reconstruction filter

'entInfo' Structure (entropy information)

The fields of the entropy information structure, 'entInfo', are also
valid for 'FieldName':
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'entName' Entropy name

'entPar' Entropy parameter

Or fields of DTREE parent object:

'ntree' NTREE parent object

'allNI' All nodes information

'terNI' Terminal nodes information

Or fields of NTREE parent object:

'wtbo' WTBO parent object

'order' Order of the tree

'depth' Depth of the tree

'spsch' Split scheme for nodes

'tn' Array of terminal nodes of the tree

Or fields of WTBO parent object:

'wtboInfo' Object information

'ud' Userdata field

Caution The set function should only be used to set the field 'ud'.

See Also disp | get | read | write

1-389



shanwavf

Purpose Complex Shannon wavelet

Syntax [PSI,X] = shanwavf(LB,UB,N,FB,FC)

Description [PSI,X] = shanwavf(LB,UB,N,FB,FC) returns values of the complex
Shannon wavelet defined by a bandwidth parameter FB, a wavelet
center frequency FC, and the expression

PSI(X) = (FB^0.5)*(sinc(FB*X).*exp(2*i*pi*FC*X))

on an N point regular grid in the interval [LB,UB].

FB and FC must be such that FC > 0 and FB > 0.

Output arguments are the wavelet function PSI computed on the grid X.

Examples % Set bandwidth and center frequency parameters.
fb = 1; fc = 1.5;

% Set effective support and grid parameters.
lb = -20; ub = 20; n = 1000;

% Compute complex Shannon wavelet shan1.5-1.
[psi,x] = shanwavf(lb,ub,n,fb,fc);

% Plot complex Shannon wavelet.
subplot(211)
plot(x,real(psi)),
title('Complex Shannon wavelet shan1.5-1')
xlabel('Real part'), grid
subplot(212)
plot(x,imag(psi))
xlabel('Imaginary part'), grid
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References Teolis, A. (1998), Computational signal processing with wavelets,
Birkäuser, p. 62.

See Also waveinfo
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Purpose Discrete stationary wavelet transform 1-D

Syntax SWC = swt(X,N,'wname')
SWC = swt(X,N,Lo_D,Hi_D)

Description swt performs a multilevel 1-D stationary wavelet decomposition using
either a specific orthogonal wavelet ('wname', see wfilters for more
information) or specific orthogonal wavelet decomposition filters.

SWC = swt(X,N,'wname') computes the stationary wavelet
decomposition of the signal X at level N, using 'wname'.

N must be a strictly positive integer (see wmaxlev for more information)
and length(X) must be a multiple of 2N .

SWC = swt(X,N,Lo_D,Hi_D) computes the stationary wavelet
decomposition as above, given these filters as input:

• Lo_D is the decomposition low-pass filter.

• Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.

The output matrix SWC contains the vectors of coefficients stored
row-wise:

For 1 ≤ i ≤ N, the output matrix SWC(i,:) contains the detail
coefficients of level i and SWC(N+1,:) contains the approximation
coefficients of level N.

[SWA,SWD] = swt( ) computes approximations, SWA, and details, SWD,
stationary wavelet coefficients.

The vectors of coefficients are stored row-wise:

For 1 ≤ i ≤ N, the output matrix SWA(i,:) contains the approximation
coefficients of level i and the output matrix SWD(i,:) contains the
detail coefficients of level i.
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Note swt is defined using dwt with periodic extension.

Examples % Load original 1D signal.
load noisbloc; s = noisbloc;

% Perform SWT decomposition at level 3 of s using db1.
[swa,swd] = swt(s,3,'db1');

% Plots of SWT coefficients of approximations and details
% at levels 3 to 1.

% Using some plotting commands,
% the following figure is generated.
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Algorithms Given a signal s of length N, the first step of the SWT produces, starting
from s, two sets of coefficients: approximation coefficients cA1 and detail
coefficients cD1. These vectors are obtained by convolving s with the
low-pass filter Lo_D for approximation, and with the high-pass filter
Hi_D for detail.

More precisely, the first step is
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Note cA1 and cD1 are of length N instead of N/2 as in the DWT case.

The next step splits the approximation coefficients cA1 in two
parts using the same scheme, but with modified filters obtained by
upsampling the filters used for the previous step and replacing s by cA1.
Then, the SWT produces cA2 and cD2. More generally,
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References Nason, G.P.; B.W. Silverman (1995), “The stationary wavelet transform
and some statistical applications,” Lecture Notes in Statistics, 103, pp.
281–299.

Coifman, R.R.; Donoho, D.L. (1995), “Translation invariant de-noising,”
Lecture Notes in Statistics, 103, pp. 125–150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), “Time-invariant
orthonormal wavelet representations,” IEEE Trans. Sign. Proc., vol.
44, 8, pp. 1964–1970.

See Also dwt | wavedec
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Purpose Discrete stationary wavelet transform 2-D

Syntax SWC = swt2(X,N,'wname')
[A,H,V,D] = swt2(X,N,'wname')
SWC = swt2(X,N,Lo_D,Hi_D)
[A,H,V,D] = swt2(X,N,Lo_D,Hi_D)

Description swt2 performs a multilevel 2-D stationary wavelet decomposition using
either a specific orthogonal wavelet ('wname'— see wfilters for more
information) or specific orthogonal wavelet decomposition filters.

SWC = swt2(X,N,'wname') or [A,H,V,D] = swt2(X,N,'wname')
compute the stationary wavelet decomposition of the matrix X at level N,
using 'wname'.

N must be a strictly positive integer (see wmaxlev for more information),
and 2Nmust divide size(X,1) and size(X,2).

Outputs [A,H,V,D] are 3-D arrays, which contain the coefficients:

• For 1 ≤ i ≤ N, the output matrix A(:,:,i) contains the coefficients
of approximation of level i.

• The output matrices H(:,:,i), V(:,:,i) and D(:,:,i) contain the
coefficients of details of level i (horizontal, vertical, and diagonal):

SWC = [H(:,:,1:N) ; V(:,:,1:N) ; D(:,:,1:N) ; A(:,:,N)]

SWC = swt2(X,N,Lo_D,Hi_D) or [A,H,V,D] = swt2(X,N,Lo_D,Hi_D),
computes the stationary wavelet decomposition as in the previous
syntax, given these filters as input:

• Lo_D is the decomposition low-pass filter.

• Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.

Note swt2 is defined using dwt with periodic extension.
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Tips When X represents an indexed image, X is an m-by-n matrix and the
output arrays SWC or cA,cH,cV, and cD are m-by-n-by-p arrays.

When X represents a truecolor image, it becomes an m-by-n-by-3 array.
This array is an m-by-n-by-3 array, where each m-by-n matrix represents
a red, green, or blue color plane concatenated along the third dimension.
The output arrays SWC or cA,cH,cV, and cD are m-by-n-by-p-by-3 arrays.

For more information on image formats, see the image and imfinfo
reference pages.

Examples % Load original image.
load nbarb1;

% Image coding.
nbcol = size(map,1);
cod_X = wcodemat(X,nbcol);

% Visualize the original image.
subplot(221)
image(cod_X)
title('Original image');
colormap(map)

% Perform SWT decomposition
% of X at level 3 using sym4.
[ca,chd,cvd,cdd] = swt2(X,3,'sym4');

% Visualize the decomposition.

for k = 1:3
% Images coding for level k.
cod_ca = wcodemat(ca(:,:,k),nbcol);
cod_chd = wcodemat(chd(:,:,k),nbcol);
cod_cvd = wcodemat(cvd(:,:,k),nbcol);
cod_cdd = wcodemat(cdd(:,:,k),nbcol);
decl = [cod_ca,cod_chd;cod_cvd,cod_cdd];
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% Visualize the coefficients of the decomposition
% at level k.
subplot(2,2,k+1)
image(decl)

title(['SWT dec.: approx. ', ...
'and det. coefs (lev. ',num2str(k),')']);
colormap(map)

end
% Editing some graphical properties,
% the following figure is generated.
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Algorithms For images, an algorithm similar to the one-dimensional case is possible
for two-dimensional wavelets and scaling functions obtained from
one-dimensional ones by tensor product.

This kind of two-dimensional SWT leads to a decomposition
of approximation coefficients at levelj in four components: the
approximation at level j+1, and the details in three orientations
(horizontal, vertical, and diagonal).

The following chart describes the basic decomposition step for images:
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References Nason, G.P.; B.W. Silverman (1995), “The stationary wavelet transform
and some statistical applications,” Lecture Notes in Statistics, 103, pp.
281–299.

Coifman, R.R.; Donoho, D.L. (1995), “Translation invariant de-noising,”
Lecture Notes in Statistics, 103, pp. 125–150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), “Time-invariant
orthonormal wavelet representations,” IEEE Trans. Sign. Proc., vol.
44, 8, pp. 1964–1970.

See Also dwt2 | iswt2 | wavedec2
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Purpose Symlet wavelet filter computation

Syntax W = SYMAUX(N,SUMW)
W = SYMAUX(N)
W = SYMAUX(N,1)
W = SYMAUX(N,0)
W = SYMAUX(N,1)

Description Symlets are the Äúleast asymmetricÄù Daubechies wavelets.

W = SYMAUX(N,SUMW) is the order N Symlet scaling filter such that
SUM(W) = SUMW. Possible values for N are 1, 2, 3, ...

Note Instability may occur when N is too large.

W = SYMAUX(N) is equivalent to W = SYMAUX(N,1).

W = SYMAUX(N,0) is equivalent to W = SYMAUX(N,1).

Examples % Generate wdb4 the order 4 Daubechies scaling filter.
wdb4 = dbaux(4)

wdb4 =

Columns 1 through 7

0.1629 0.5055 0.4461 -0.0198 -0.1323 0.0218 0.0233

Column 8

-0.0075

% wdb4 is a solution of the equation: P = conv(wrev(w),w)*2,
% where P is the "Lagrange trous" filter for N=4.
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% wdb4 is a minimum phase solution of the previous equation,
% based on the roots of P (see dbaux).
P = conv(wrev(wdb4),wdb4)*2;

% Generate wsym4 the order 4 symlet scaling filter.
% The Symlets are the "least asymmetric" Daubechies'
% wavelets obtained from another choice between the roots of P.
wsym4 = symaux(4)

wsym4 =

Columns 1 through 7

0.0228 -0.0089 -0.0702 0.2106 0.5683 0.3519 -0.0210

Column 8

-0.0536

% Compute conv(wrev(wsym4),wsym4) * 2 and check that wsym4
% is another solution of the equation P = conv(wrev(w),w)*2.
Psym = conv(wrev(wsym4),wsym4)*2;
err = norm(P-Psym)

err =

7.4988e-016

See Also symwavf | wfilters
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Purpose Symlet wavelet filter

Syntax F = symwavf(W)

Description F = symwavf(W) returns the scaling filter associated with the symlet
wavelet specified by the string W where W = 'symN'. Possible values
for N are 2, 3, ..., 45.

Examples % Compute the scaling filter corresponding to wavelet sym4.
w = symwavf('sym4')

w =
Columns 1 through 7

0.0228 -0.0089 -0.0702 0.2106 0.5683 0.3519 -0.0210
Column 8

-0.0536

See Also symaux | waveinfo
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Purpose Threshold selection for de-noising

Syntax THR = thselect(X,TPTR)

Description thselect is a one-dimensional de-noising oriented function.

THR = thselect(X,TPTR) returns threshold X-adapted value using
selection rule defined by string TPTR.

Available selection rules are

• TPTR = 'rigrsure', adaptive threshold selection using principle of
Stein’s Unbiased Risk Estimate.

• TPTR = 'heursure', heuristic variant of the first option.

• TPTR = 'sqtwolog', threshold is sqrt(2*log(length(X))).

• TPTR = 'minimaxi', minimax thresholding.

Threshold selection rules are based on the underlying model y = f(t) +
e where e is a white noise N(0,1). Dealing with unscaled or nonwhite
noise can be handled using rescaling output threshold THR (see SCAL
parameter in wden for more information).

Available options are

• tptr = 'rigrsure' uses for the soft threshold estimator, a
threshold selection rule based on SteinÄôs Unbiased Estimate of
Risk (quadratic loss function). One gets an estimate of the risk for
a particular threshold value (t). Minimizing the risks in (t) gives a
selection of the threshold value.

• tptr = 'sqtwolog' uses a fixed-form threshold yielding
minimax performance multiplied by a small factor proportional to
log(length(X)).

• tptr = 'heursure' is a mixture of the two previous options. As a
result, if the signal to noise ratio is very small, the SURE estimate is
very noisy. If such a situation is detected, the fixed form threshold
is used.
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• tptr = 'minimaxi' uses a fixed threshold chosen to yield minimax
performance for mean square error against an ideal procedure. The
minimax principle is used in statistics in order to design estimators.
Since the de-noised signal can be assimilated to the estimator of the
unknown regression function, the minimax estimator is the one that
realizes the minimum of the maximum mean square error obtained
for the worst function in a given set.

Examples % The current extension mode is zero-padding (see dwtmode).
% Generate Gaussian white noise.
x = randn(1,1000);

% Find threshold for each selection rule.
% Adaptive threshold using SURE.
thr = thselect(x,'rigrsure')
% Fixed form threshold.
thr = thselect(x,'sqtwolog')
% Heuristic variant of the first option.
thr = thselect(x,'heursure')
% Minimax threshold.
thr = thselect(x,'minimaxi')

References Donoho, D.L. (1993), “Progress in wavelet analysis and WVD: a ten
minute tour,” in Progress in wavelet analysis and applications, Y.
Meyer, S. Roques, pp. 109–128. Frontières Ed.

Donoho, D.L., I.M. Johnstone (1994), “Ideal spatial adaptation by
wavelet shrinkage,” Biometrika, vol 81, pp. 425–455.

Donoho, D.L. (1995), “De-noising by soft-thresholding,” IEEE Trans. on
Inf. Theory, 41, 3, pp. 613–627.

See Also wden
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Purpose Determine terminal nodes

Syntax N = tnodes(T)
N = tnodes(T,'deppos')
[N,K] = tnodes(T)
[N,K] = tnodes(T,'deppos'), M = N(K)

Description tnodes is a tree-management utility.

N = tnodes(T) returns the indices of terminal nodes of the tree T. N
is a column vector.

The nodes are numbered from left to right and from top to bottom. The
root index is 0.

N = tnodes(T,'deppos') returns a matrix N, which contains the
depths and positions of terminal nodes.

N(i,1) is the depth of the i-th terminal node. N(i,2) is the position
of the i-th terminal node.

For [N,K] = tnodes(T) or [N,K] = tnodes(T,'deppos'), M = N(K)
are the indices reordered as in tree T, from left to right.

Examples % Create initial tree.
ord = 2;
t = ntree(ord,3); % Binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)
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% Change Node Label from Depth_Position to Index
% (see the plot function).

% List terminal nodes (index).
tnodes(t)

ans =
4
5
7
8
13
14

% List terminal nodes (Depth_Position).
tnodes(t,'deppos')
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ans =
2 1
2 2
3 0
3 1
3 6
3 7

See Also leaves | noleaves | wtreemgr
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Purpose Tree depth

Syntax D = treedpth(T)

Description treedpth is a tree-management utility.

D = treedpth(T) returns the depth D of the tree T.

Examples % Create binary tree (tree of order 2) of depth 3.
t = ntree(2,3);

% Plot tree t.
plot(t)

% Tree depth.
treedpth(t)

ans =
3

See Also wtreemgr
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Purpose Tree order

Syntax ORD = treeord(T)

Description treeord is a tree-management utility.

ORD = treeord(T) returns the order ORD of the tree T.

Examples % Create binary tree (tree of order 2) of depth 3.
t = ntree(2,3);

% Plot tree t.
plot(t)

% Tree order.
treeord(t)

ans =
2

See Also wtreemgr
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Purpose Direct reconstruction from 1-D wavelet coefficients

Syntax Y = upcoef(O,X,'wname',N)
Y = upcoef(O,X,'wname',N,L)
Y = upcoef(O,X,Lo_R,Hi_R,N)
Y = upcoef(O,X,Lo_R,Hi_R,N,L)
Y = upcoef(O,X,'wname'')
Y = upcoef(O,X,'wname'',1)
Y = upcoef(O,X,Lo_R,Hi_R)
Y = upcoef(O,X,Lo_R,Hi_R,1)

Description upcoef is a one-dimensional wavelet analysis function.

Y = upcoef(O,X,'wname',N) computes the N-step reconstructed
coefficients of vector X.

'wname' is a string containing the wavelet name. See wfilters for
more information.

N must be a strictly positive integer.

If O = 'a', approximation coefficients are reconstructed.

If O = 'd', detail coefficients are reconstructed.

Y = upcoef(O,X,'wname',N,L) computes the N-step reconstructed
coefficients of vector X and takes the length-L central portion of the
result.

Instead of giving the wavelet name, you can give the filters.

For Y = upcoef(O,X,Lo_R,Hi_R,N) or Y =
upcoef(O,X,Lo_R,Hi_R,N,L), Lo_R is the reconstruction low-pass filter
and Hi_R is the reconstruction high-pass filter.

Y = upcoef(O,X,'wname'') is equivalent to Y =
upcoef(O,X,'wname'',1).

Y = upcoef(O,X,Lo_R,Hi_R) is equivalent to Y =
upcoef(O,X,Lo_R,Hi_R,1).
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Examples % The current extension mode is zero-padding (see dwtmode).

% Approximation signals, obtained from a single coefficient
% at levels 1 to 6.
cfs = [1]; % Decomposition reduced a single coefficient.
essup = 10; % Essential support of the scaling filter db6.
figure(1)
for i=1:6

% Reconstruct at the top level an approximation
% which is equal to zero except at level i where only
% one coefficient is equal to 1.
rec = upcoef('a',cfs,'db6',i);

% essup is the essential support of the
% reconstructed signal.
% rec(j) is very small when j is essup.
ax = subplot(6,1,i),h = plot(rec(1:essup));
set(ax,'xlim',[1 325]);
essup = essup*2;

end
subplot(611)
title(['Approximation signals, obtained from a single ' ...

'coefficient at levels 1 to 6'])

% Editing some graphical properties,
% the following figure is generated.
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% The same can be done for details.
% Details signals, obtained from a single coefficient
% at levels 1 to 6.

cfs = [1];
mi = 12; ma = 30; % Essential support of

% the wavelet filter db6.
rec = upcoef('d',cfs,'db6',1);
figure(2)
subplot(611), plot(rec(3:12))
for i=2:6

% Reconstruct at top level a single detail
% coefficient at level i.
rec = upcoef('d',cfs,'db6',i);
subplot(6,1,i), plot(rec(mi*2^(i-2):ma*2^(i-2)))

end
subplot(611)
title(['Detail signals obtained from a single ' ...
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'coefficient at levels 1 to 6'])
% Editing some graphical properties,
% the following figure is generated.

Algorithms upcoef is equivalent to an N time repeated use of the inverse wavelet
transform.

See Also idwt
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Purpose Direct reconstruction from 2-D wavelet coefficients

Syntax Y = upcoef2(O,X,'wname',N,S)
Y = upcoef2(O,X,Lo_R,Hi_R,N,S)
Y = upcoef2(O,X,'wname',N)
Y = upcoef2(O,X,Lo_R,Hi_R,N)
Y = upcoef2(O,X,'wname')
Y = upcoef2(O,X,'wname',1)
Y = upcoef2(O,X,Lo_R,Hi_R)
Y = upcoef2(O,X,Lo_R,Hi_R,1)

Description upcoef2 is a two-dimensional wavelet analysis function.

Y = upcoef2(O,X,'wname',N,S) computes the N-step reconstructed
coefficients of matrix X and takes the central part of size S. 'wname' is
a string containing the name of the wavelet. See wfilters for more
information.

If O = 'a', approximation coefficients are reconstructed; otherwise if
O = 'h' ('v' or 'd', respectively), horizontal (vertical or diagonal,
respectively) detail coefficients are reconstructed. N must be a strictly
positive integer.

Instead of giving the wavelet name, you can give the filters.

For Y = upcoef2(O,X,Lo_R,Hi_R,N,S) is the reconstruction low-pass
filter and Hi_R is the reconstruction high-pass filter.

Y = upcoef2(O,X,'wname',N) or Y = upcoef2(O,X,Lo_R,Hi_R,N)
returns the computed result without any truncation.

Y = upcoef2(O,X,'wname') is equivalent to Y =
upcoef2(O,X,'wname',1).

Y = upcoef2(O,X,Lo_R,Hi_R) is equivalent to
Y = upcoef2(O,X,Lo_R,Hi_R,1).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image.
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load woman;
% X contains the loaded image.

% Perform decomposition at level 2
% of X using db4.
[c,s] = wavedec2(X,2,'db4');

% Reconstruct approximation and details
% at level 1, from coefficients.
% This can be done using wrcoef2, or
% equivalently using:
%
% Step 1: Extract coefficients from the
% decomposition structure [c,s].
%
% Step 2: Reconstruct using upcoef2.

siz = s(size(s,1),:);

ca1 = appcoef2(c,s,'db4',1);
a1 = upcoef2('a',ca1,'db4',1,siz);

chd1 = detcoef2('h',c,s,1);
hd1 = upcoef2('h',chd1,'db4',1,siz);

cvd1 = detcoef2('v',c,s,1);
vd1 = upcoef2('v',cvd1,'db4',1,siz);

cdd1 = detcoef2('d',c,s,1);
dd1 = upcoef2('d',cdd1,'db4',1,siz);

Algorithms See upcoef.

See Also idwt2
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Purpose Single-level reconstruction of 1-D wavelet decomposition

Syntax [NC,NL,cA] = upwlev(C,L,'wname')

Description upwlev is a one-dimensional wavelet analysis function.

[NC,NL,cA] = upwlev(C,L,'wname') performs the single-level
reconstruction of the wavelet decomposition structure [C,L] giving
the new one [NC,NL], and extracts the last approximation coefficients
vector cA.

[C,L] is a decomposition at level n = length(L)-2, so [NC,NL] is the
same decomposition at level n-1 and cA is the approximation coefficients
vector at level n.

'wname' is a string containing the wavelet name, C is the original
wavelet decomposition vector, and L the corresponding bookkeeping
vector (for detailed storage information, see wavedec ).

Instead of giving the wavelet name, you can give the filters.

For [NC,NL,cA] = upwlev(C,L,Lo_R,Hi_R), Lo_R is the reconstruction
low-pass filter and Hi_R is the reconstruction high-pass filter.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original one-dimensional signal.
load sumsin; s = sumsin;

% Perform decomposition at level 3 of s using db1.
[c,l] = wavedec(s,3,'db1');
subplot(311); plot(s);
title('Original signal s.');
subplot(312); plot(c);
title('Wavelet decomposition structure, level 3')
xlabel(['Coefs for approx. at level 3 ' ...

'and for det. at levels 3, 2 and 1'])

% One step reconstruction of the wavelet decomposition
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% structure at level 3 [c,l], so the new structure [nc,nl]
% is the wavelet decomposition structure at level 2.
[nc,nl] = upwlev(c,l,'db1');
subplot(313); plot(nc);
title('Wavelet decomposition structure, level 2')
xlabel(['Coefs for approx. at level 2 ' ...

'and for det. at levels 2 and 1'])

% Editing some graphical properties,
% the following figure is generated.

See Also idwt
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How To • upcoef

• wavedec
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Purpose Single-level reconstruction of 2-D wavelet decomposition

Syntax [NC,NS,cA] = upwlev2(C,S,'wname')
[NC,NS,cA] = upwlev2(C,S,Lo_R,Hi_R)

Description upwlev2 is a two-dimensional wavelet analysis function.

[NC,NS,cA] = upwlev2(C,S,'wname') performs the single-level
reconstruction of wavelet decomposition structure [C,S] giving the new
one [NC,NS], and extracts the last approximation coefficients matrix cA.

[C,S] is a decomposition at level n = size(S,1)-2, so [NC,NS] is the
same decomposition at level n-1 and cA is the approximation matrix at
level n.

'wname' is a string containing the wavelet name, C is the original
wavelet decomposition vector, and S the corresponding bookkeeping
matrix (for detailed storage information, see wavedec2).

Instead of giving the wavelet name, you can give the filters.

For [NC,NS,cA] = upwlev2(C,S,Lo_R,Hi_R), Lo_R is the
reconstruction low-pass filter and Hi_R is the reconstruction high-pass
filter.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image.
load woman;
% X contains the loaded image.

% Perform decomposition at level 2
% of X using db1.
[c,s] = wavedec2(X,2,'db1');
sc = size(c)

sc =
1 65536
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val_s = s

val_s =
64 64
64 64
128 128
256 256

% One step reconstruction of wavelet
% decomposition structure [c,s].
[nc,ns] = upwlev2(c,s,'db1');
snc = size(nc)

snc =
1 65536

val_ns = ns

val_ns =
128 128
128 128
256 256

See Also idwt2 | upcoef2 | wavedec2
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Purpose Laurent polynomials associated with wavelet

Syntax [Hs,Gs,Ha,Ga] = wave2lp(W)

Description [Hs,Gs,Ha,Ga] = wave2lp(W) returns the four Laurent polynomials
associated with the wavelet W (see liftwave).

The pairs (Hs,Gs) and (Ha,Ga) are the synthesis and the analysis
pair respectively.

The H-polynomials (G-polynomials) are low-pass (high-pass) polynomials.

For an orthogonal wavelet, Hs = Ha and Gs = Ga.

Examples % Get Laurent polynomials associated to the "lazy" wavelet.
[Hs,Gs,Ha,Ga] = wave2lp('lazy')

Hs(z) = 1

Gs(z) = z^(-1)

Ha(z) = 1

Ga(z) = z^(-1)

% Get Laurent polynomials associated to the db1 wavelet.
[Hs,Gs,Ha,Ga] = wave2lp('db1')

Hs(z) = + 0.7071 + 0.7071*z^(-1)

Gs(z) = - 0.7071 + 0.7071*z^(-1)

Ha(z) = + 0.7071 + 0.7071*z^(-1)

Ga(z) = - 0.7071 + 0.7071*z^(-1)

% Get Laurent polynomials associated to the bior1.3 wavelet.
[Hs,Gs,Ha,Ga] = wave2lp('bior1.3')
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Hs(z) = + 0.7071 + 0.7071*z^(-1)

Gs(z) = ...
+ 0.08839*z^(+2) + 0.08839*z^(+1) - 0.7071 + 0.7071*z^(-1) -

0.08839*z^(-2) ...
- 0.08839*z^(-3)

Ha(z) = ...
- 0.08839*z^(+2) + 0.08839*z^(+1) + 0.7071 + 0.7071*z^(-1) +

0.08839*z^(-2) ...
- 0.08839*z^(-3)

Ga(z) = - 0.7071 + 0.7071*z^(-1)

See Also laurpoly
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Purpose Multilevel 1-D wavelet decomposition

Syntax [C,L] = wavedec(X,N,'wname')
[C,L] = wavedec(X,N,Lo_D,Hi_D)

Description wavedec performs a multilevel one-dimensional wavelet analysis using
either a specific wavelet ('wname') or a specific wavelet decomposition
filters (Lo_D and Hi_D, see wfilters).

Note wavedec supports only Type 1 (orthogonal) or Type 2
(biorthogonal) wavelets.

[C,L] = wavedec(X,N,'wname') returns the wavelet decomposition
of the signal X at level N, using 'wname'. N must be a strictly positive
integer (see wmaxlev for more information). The output decomposition
structure contains the wavelet decomposition vector C and the
bookkeeping vector L. The structure is organized as in this level-3
decomposition example.
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[C,L] = wavedec(X,N,Lo_D,Hi_D) returns the decomposition
structure as above, given the low- and high-pass decomposition filters
you specify.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original one-dimensional signal.
load sumsin; s = sumsin;
% Perform decomposition at level 3 of s using db1.
[c,l] = wavedec(s,3,'db1');
% Using some plotting commands,
% the following figure is generated.
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Algorithms Given a signal s of length N, the DWT consists of log2 N stages at
most. The first step produces, starting from s, two sets of coefficients:
approximation coefficients CA1, and detail coefficients CD1. These
vectors are obtained by convolving s with the low-pass filter Lo_D for
approximation, and with the high-pass filter Hi_D for detail, followed by
dyadic decimation (downsampling).

More precisely, the first step is
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The length of each filter is equal to 2N. If n = length(s), the signals F and
G are of length n + 2N −1 and the coefficients cA1 and cD1 are of length

floor
n

N
−⎛

⎝⎜
⎞
⎠⎟

+1
2

The next step splits the approximation coefficients cA1 in two parts
using the same scheme, replacing s by cA1, and producing cA2 and
cD2, and so on
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The wavelet decomposition of the signal s analyzed at level j has the
following structure: [cAj, cDj, ..., cD1].

This structure contains, for J = 3, the terminal nodes of the following
tree:

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference
series in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition:
the wavelet representation,” IEEE Pattern Anal. and Machine Intell.,
vol. 11, no. 7, pp 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed.
(English translation: Wavelets and operators, Cambridge Univ. Press.
1993.)

See Also dwt | waveinfo | waverec | wfilters | wmaxlev
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Purpose Multilevel 2-D wavelet decomposition

Syntax [C,S] = wavedec2(X,N,'wname')
[C,S] = wavedec2(X,N,Lo_D,Hi_D)

Description wavedec2 is a two-dimensional wavelet analysis function.

[C,S] = wavedec2(X,N,'wname') returns the wavelet decomposition
of the matrix X at level N, using the wavelet named in string 'wname'
(see wfilters for more information).

Outputs are the decomposition vector C and the corresponding
bookkeeping matrix S.

N must be a strictly positive integer (see wmaxlev for more information).

Instead of giving the wavelet name, you can give the filters.

For [C,S] = wavedec2(X,N,Lo_D,Hi_D), Lo_D is the decomposition
low-pass filter and Hi_D is the decomposition high-pass filter.

Vector C is organized as

C = [ A(N) | H(N) | V(N) | D(N) | ...
H(N-1) | V(N-1) | D(N-1) | ... | H(1) | V(1) | D(1) ].

where A, H, V, D, are row vectors such that

• A = approximation coefficients

• H = horizontal detail coefficients

• V = vertical detail coefficients

• D = diagonal detail coefficients

• Each vector is the vector column-wise storage of a matrix.

Matrix S is such that

• S(1,:) = size of approximation coefficients(N).

• S(i,:) = size of detail coefficients(N-i+2) for i = 2, ...N+1 and
S(N+2,:) = size(X).
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Tips When X represents an indexed image, X, as well as the output arrays
cA,cH,cV, and cD are m-by-n matrices. When X represents a truecolor
image, it is an m-by-n-by-3 array, where each m-by-n matrix represents a
red, green, or blue color plane concatenated along the third dimension.
The size of vector C and the size of matrix S depend on the type of
analyzed image.

For a truecolor image, the decomposition vector C and the corresponding
bookkeeping matrix S can be represented as follows.
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For more information on image formats, see the image and imfinfo
reference pages.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image.
load woman;
% X contains the loaded image.

% Perform decomposition at level 2
% of X using db1.
[c,s] = wavedec2(X,2,'db1');

% Decomposition structure organization.
sizex = size(X)

sizex =
256 256

sizec = size(c)

sizec =
1 65536
val_s = s

val_s =
64 64
64 64
128 128
256 256

Algorithms For images, an algorithm similar to the one-dimensional case is possible
for two-dimensional wavelets and scaling functions obtained from
one-dimensional ones by tensor product.

This kind of two-dimensional DWT leads to a decomposition of
approximation coefficients at level j in four components: the
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approximation at level j+1, and the details in three orientations
(horizontal, vertical, and diagonal).

The following chart describes the basic decomposition step for images:

So, for J=2, the two-dimensional wavelet tree has the form
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References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference
series in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition:
the wavelet representation,” IEEE Pattern Anal. and Machine Intell.,
vol. 11, no. 7, pp. 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed.
(English translation: Wavelets and operators, Cambridge Univ. Press.
1993.)

See Also dwt | waveinfo | waverec2 | wfilters | wmaxlev
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Purpose Multilevel 3-D wavelet decomposition

Syntax WDEC = wavedec3(X,N,'wname')
WDEC = wavedec3(X,N,'wname','mode','ExtM')
WDEC = wavedec3(X,N,{LoD,HiD,LoR,HiR})

Description wavedec3 is a three-dimensional wavelet analysis function.

WDEC = wavedec3(X,N,'wname') returns the wavelet decomposition of
the 3-D array X at level N, using the wavelet named in string 'wname' or
the particular wavelet filters you specify. It uses the default extension
mode 'sym'. See dwtmode. N must be a positive integer.

WDEC = wavedec3(X,N,'wname','mode','ExtM') uses the specified
DWT extension mode .

WDEC = wavedec3(X,N,{LoD,HiD,LoR,HiR}) uses the decomposition
and reconstruction filters you specify in a cell array.

WDEC is the output decomposition structure, with the following fields:

sizeINI Size of the three-dimensional array X

level Level of the decomposition

mode Name of the wavelet transform extension mode

filters Structure with 4 fields, LoD, HiD, LoR, HiR, which
contain the filters used for DWT.
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dec N x 1 cell array containing the coefficients of the
decomposition. N is equal to 7*WDEC.level+1.

dec{1} contains the lowpass component
(approximation) at the level of the decomposition.
The approximation is equivalent to the filtering
operations 'LLL'.

dec{k+2},...,dec{k+8} with k =
0,7,14,...,7*(WDEC.level-1) contain the
3-D wavelet coefficients for the multiresolution
starting with the coarsest level when k=0.

For example, if WDEC.level=3,
dec{2},...,dec{8} contain the wavelet
coefficients for level 3 (k=0), dec{9},...,dec{15}
contain the wavelet coefficients for level 2 (k=7),
and dec{16},...,dec{22} contain the wavelet
coefficients for level 1 (k=7*(WDEC.level-1)).

At each level, the wavelet coefficients
in dec{k+2},...,dec{k+8}
are in the following order:
'HLL','LHL','HHL','LLH','HLH','LHH','HHH'.

The strings give the order in which the separable
filtering operations are applied from left to
right. For example, 'LHH' means that the
lowpass (scaling) filter with downsampling is
applied to the rows of X, followed by the highpass
(wavelet) filter with downsampling applied to the
columns of X. Finally, the highpass filter with
downsampling is applied to the 3rd dimension
of X.

sizes Successive sizes of the decomposition components
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Examples 3-D Wavelet Transform

Find the 3-D DWT of a volume.

Construct 8-by-8-by-8 matrix. Obtain the 3-D discrete wavelet
transform at level 1 using the Haar wavelet and the default whole-point
symmetric extension mode.

% Matrix of integers 1:64
M = magic(8);
% Make data 3-D
X = repmat(M,[1 1 8]);
% Decompose X at level 1 using db1.
wd1 = wavedec3(X,1,'db1');

3-D Wavelet Transform Using Specified Decomposition and
Reconstruction Filters

Specify the decomposition and reconstruction filters as a cell array.

Construct 8-by-8-by-8 matrix. Obtain the 3-D discrete wavelet
transform down to level 2 using the Daubechies extremal phase
wavelet with two vanishing moments. Input the decomposition and
reconstruction filters as a cell array. Use the periodic extension mode.

% Matrix of integers 1:64
M = magic(8);
% Make data 3-D
X = repmat(M,[1 1 8]);
[LoD,HiD,LoR,HiR] = wfilters('db2');
wd2 = wavedec3(X,2,{LoD,HiD,LoR,HiR},'mode','per');

Coefficient Order in 3-D Wavelet Transform

Compare the output of wavedec3 and dwt3 to illustrate the ordering of
the 3-D wavelet coefficients described in the dec field description.

X = reshape(1:512,8,8,8);
dwtOut = dwt3(X,'db1','mode','per');
wdec = wavedec3(X,1,'db1','mode','per');
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max(abs((wdec.dec{4}(:)-dwtOut.dec{2,2,1}(:))))
max(abs((wdec.dec{5}(:)-dwtOut.dec{1,1,2}(:))))

See Also dwt3 | dwtmode | waveinfo | waverec3 | wfilters | wmaxlev
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Purpose Wavelet Toolbox software examples

Syntax

Description wavedemo opens a GUI that allows you to choose between several
Wavelet Toolbox examples.
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Purpose Wavelet and scaling functions

Syntax [PHI,PSI,XVAL] = wavefun('wname',ITER)
[PHI1,PSI1,PHI2,PSI2,XVAL] = wavefun('wname',ITER)
[PHI,PSI,XVAL] = wavefun('wname',ITER)
[PSI,XVAL] = wavefun('wname',ITER)
[...] = wavefun(wname,A,B)
[...] = wavefun('wname',max(A,B))
[...] = wavefun('wname',0)
[...] = wavefun('wname',8,0)
[...] = wavefun('wname')
[...] = wavefun('wname',8)

Description The function wavefun returns approximations of the wavelet function
'wname' and the associated scaling function, if it exists. The positive
integer ITER determines the number of iterations computed; thus, the
refinement of the approximations.

For an orthogonal wavelet:

[PHI,PSI,XVAL] = wavefun('wname',ITER) returns the scaling and
wavelet functions on the points grid XVAL.

For a biorthogonal wavelet:

[PHI1,PSI1,PHI2,PSI2,XVAL] = wavefun('wname',ITER) returns the
scaling and wavelet functions both for decomposition (PHI1,PSI1) and
for reconstruction (PHI2,PSI2).

For a Meyer wavelet:

[PHI,PSI,XVAL] = wavefun('wname',ITER)

For a wavelet without scaling function (e.g., Morlet, Mexican Hat,
Gaussian derivatives wavelets or complex wavelets):

[PSI,XVAL] = wavefun('wname',ITER)

[...] = wavefun(wname,A,B), where A and B are positive integers, is
equivalent to [...] = wavefun('wname',max(A,B)), and draws plots.

When A is set equal to the special value 0,
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• [...] = wavefun('wname',0) is equivalent to

• [...] = wavefun('wname',8,0).

• [...] = wavefun('wname') is equivalent to

• [...] = wavefun('wname',8).

The output arguments are optional.

Examples On the following graph, 10 piecewise linear approximations of the
sym4 wavelet obtained after each iteration of the cascade algorithm
are shown.

% Set number of iterations and wavelet name.
iter = 10;
wav = 'sym4';

% Compute approximations of the wavelet function using the
% cascade algorithm.
for i = 1:iter

[phi,psi,xval] = wavefun(wav,i);
plot(xval,psi);
hold on

end
title(['Approximations of the wavelet ',wav, ...

' for 1 to ',num2str(iter),' iterations']);
hold off
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Algorithms For compactly supported wavelets defined by filters, in general no
closed form analytic formula exists.

The algorithm used is the cascade algorithm. It uses the single-level
inverse wavelet transform repeatedly.

Let us begin with the scaling function ϕ.

Since ϕ is also equal to ϕ0,0, this function is characterized by the
following coefficients in the orthogonal framework:

• <ϕ, ϕ0,n> = 1 only if n = 0 and equal to 0 otherwise

• <ϕ, ψ−j,k> = 0 for positive j, and all k.

This expansion can be viewed as a wavelet decomposition structure.
Detail coefficients are all zeros and approximation coefficients are all
zeros except one equal to 1.

Then we use the reconstruction algorithm to approximate the function
ϕ over a dyadic grid, according to the following result:
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For any dyadic rational of the form x = n2−j in which the function
is continuous and where j is sufficiently large, we have pointwise
convergence and

where C is a constant, and α is a positive constant depending on the
wavelet regularity.

Then using a good approximation of ϕ on dyadic rationals, we
can use piecewise constant or piecewise linear interpolations η on
dyadic intervals, for which uniform convergence occurs with similar
exponential rate:

So using a J-step reconstruction scheme, we obtain an approximation
that converges exponentially towards ϕ when J goes to infinity.

Approximations are computed over a grid of dyadic rationals covering
the support of the function to be approximated.

Since a scaled version of the wavelet function ψ can also be expanded
on the (ϕ−1,n))n, the same scheme can be used, after a single-level
reconstruction starting with the appropriate wavelet decomposition
structure. Approximation coefficients are all zeros and detail
coefficients are all zeros except one equal to 1.

For biorthogonal wavelets, the same ideas can be applied on each of the
two multiresolution schemes in duality.

Note This algorithm may diverge if the function to be approximated is
not continuous on dyadic rationals.

References Daubechies, I., Ten lectures on wavelets, CBMS, SIAM, 1992, pp.
202Äì213.
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Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks,
Wellesley-Cambridge Press.

See Also intwave | waveinfo | wfilters
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Purpose Wavelet and scaling functions 2-D

Syntax [PHI,PSI,XVAL] = wavefun('wname',ITER)
[S,W1,W2,W3,XYVAL] = wavefun2('wname',ITER,'plot')
[S,W1,W2,W3,XYVAL] = wavefun2(wname,A,B)
[S,W1,W2,W3,XYVAL] = wavefun2('wname',max(A,B))
[S,W1,W2,W3,XYVAL] = wavefun2('wname',0)
[S,W1,W2,W3,XYVAL] = wavefun2('wname',4,0)
[S,W1,W2,W3,XYVAL] = wavefun2('wname')
[S,W1,W2,W3,XYVAL] = wavefun2('wname',4)

Description For an orthogonal wavelet 'wname', wavefun2 returns the scaling
function and the three wavelet functions resulting from the tensor
products of the one-dimensional scaling and wavelet functions.

If [PHI,PSI,XVAL] = wavefun('wname',ITER), the scaling function S
is the tensor product of PHI and PSI.

The wavelet functions W1, W2, and W3 are the tensor products (PHI,PSI),
(PSI,PHI), and (PSI,PSI), respectively.

The two-dimensional variable XYVAL is a 2ITER x 2ITER points grid
obtained from the tensor product (XVAL,XVAL).

The positive integer ITER determines the number of iterations computed
and thus, the refinement of the approximations.

[S,W1,W2,W3,XYVAL] = wavefun2('wname',ITER,'plot') computes
and also plots the functions.

[S,W1,W2,W3,XYVAL] = wavefun2(wname,A,B), where A and B are
positive integers, is equivalent to
[S,W1,W2,W3,XYVAL] = wavefun2('wname',max(A,B)). The resulting
functions are plotted.

When A is set equal to the special value 0,

• [S,W1,W2,W3,XYVAL] = wavefun2('wname',0) is equivalent to
[S,W1,W2,W3,XYVAL] = wavefun2('wname',4,0).
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• [S,W1,W2,W3,XYVAL] = wavefun2('wname') is equivalent to
[S,W1,W2,W3,XYVAL] = wavefun2('wname',4).

The output arguments are optional.

Note The wavefun2 function can only be used with an orthogonal
wavelet.

Examples On the following graph, a linear approximation of the sym4 wavelet
obtained using the cascade algorithm is shown.

% Set number of iterations and wavelet name.
iter = 4;
wav = 'sym4';

% Compute approximations of the wavelet and scale functions using
% the cascade algorithm and plot.
[s,w1,w2,w3,xyval] = wavefun2(wav,iter,0);
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Algorithms See wavefun for more information.

References Daubechies, I., Ten lectures on wavelets, CBMS, SIAM, 1992, pp.
202Äì213.

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks,
Wellesley-Cambridge Press.

See Also intwave | wavefun | waveinfo | wfilters
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Purpose Wavelets information

Syntax waveinfo('wname')

Description waveinfo provides information on all wavelets within the toolbox.

waveinfo('wname') provides information on the wavelet family whose
short name is specified by the string 'wname'. Available family short
names are listed in the table below.

Wavelet Family Short
Name Wavelet Family Name

'haar' Haar wavelet

'db' Daubechies wavelets

'sym' Symlets

'coif' Coiflets

'bior' Biorthogonal wavelets

'rbio' Reverse biorthogonal wavelets

'meyr' Meyer wavelet

'dmey' Discrete approximation of Meyer
wavelet

'gaus' Gaussian wavelets

'mexh' Mexican hat wavelet

'morl' Morlet wavelet

'cgau' Complex Gaussian wavelets

'shan' Shannon wavelets

'fbsp' Frequency B-Spline wavelets

'cmor' Complex Morlet wavelets

1-449



waveinfo

The family short names can also be user-defined ones (see wavemngr for
more information).

waveinfo('wsys') provides information on wavelet packets.

Examples waveinfo('db')

DBINFO Information on Daubechies wavelets.
Daubechies Wavelets
General characteristics: Compactly supported
wavelets with extremal phase and highest
number of vanishing moments for a given
support width. Associated scaling filters are
minimum-phase filters.

Family Daubechies
Short name db
Order N N strictly positive integer
Examples db1 or haar, db4, db15

Orthogonal yes
Biorthogonal yes
Compact support yes
DWT possible
CWT possible

Support width 2N-1
Filters length 2N
Regularity about 0.2 N for large N
Symmetry far from
Number of vanishing moments for psi N

Reference: I. Daubechies,
Ten lectures on wavelets CBMS, SIAM, 61, 1994, 194-202.

See Also wavemngr
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Purpose Wavelet families and family members

Syntax waveletfamilies('f')
waveletfamilies('n')
waveletfamilies('a')

Description waveletfamilies or waveletfamilies('f') displays the names of all
available wavelet families.

waveletfamilies('n') displays the names of all available wavelets
in each family.

waveletfamilies('a') displays all available wavelet families with
their corresponding properties.

Examples waveletfamilies

===================================
Haar haar
Daubechies db
Symlets sym
Coiflets coif
BiorSplines bior
ReverseBior rbio
Meyer meyr
DMeyer dmey
Gaussian gaus
Mexican_hat mexh
Morlet morl
Complex Gaussian cgau
Shannon shan
Frequency B-Spline fbsp
Complex Morlet cmor
===================================

waveletfamilies('n')
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===================================
Haar haar
===================================
Daubechies db
------------------------------
db1 db2 db3 db4
db5 db6 db7 db8
db9 db10 db**
===================================
Symlets sym
------------------------------
sym2 sym3 sym4 sym5
sym6 sym7 sym8 sym**
===================================
Coiflets coif
------------------------------
coif1 coif2 coif3 coif4
coif5
===================================
BiorSplines bior
------------------------------
bior1.1 bior1.3 bior1.5 bior2.2
bior2.4 bior2.6 bior2.8 bior3.1
bior3.3 bior3.5 bior3.7 bior3.9
bior4.4 bior5.5 bior6.8
===================================
ReverseBior rbio
------------------------------
rbio1.1 rbio1.3 rbio1.5 rbio2.2
rbio2.4 rbio2.6 rbio2.8 rbio3.1
rbio3.3 rbio3.5 rbio3.7 rbio3.9
rbio4.4 rbio5.5 rbio6.8
===================================
Meyer meyr
===================================
DMeyer dmey
===================================
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Gaussian gaus
------------------------------
gaus1 gaus2 gaus3 gaus4
gaus5 gaus6 gaus7 gaus8
gaus**
===================================
Mexican_hat mexh
===================================
Morlet morl
===================================
Complex Gaussian cgau
------------------------------
cgau1 cgau2 cgau3 cgau4
cgau5 cgau**
===================================
Shannon shan
------------------------------
shan1-1.5 shan1-1 shan1-0.5 shan1-0.1
shan2-3 shan**
===================================
Frequency B-Spline fbsp
------------------------------
fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**
===================================
Complex Morlet cmor
------------------------------
cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1
cmor1-0.5 cmor1-0.1 cmor**
===================================

waveletfamilies('a')

Type of Wavelets
-----------------
type = 1 - orthogonals wavelets (F.I.R.)
type = 2 - biorthogonals wavelets (F.I.R.)
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type = 3 - with scale function
type = 4 - without scale function
type = 5 - complex wavelet.
---------------------------------------------------------------

------------------------
Family Name : Haar
haar
1
no
no
dbwavf

------------------------
Family Name : Daubechies
db
1
1 2 3 4 5 6 7 8 9 10 **
integer
dbwavf

------------------------
Family Name : Symlets
sym
1
2 3 4 5 6 7 8 **
integer
symwavf

------------------------
Family Name : Coiflets
coif
1
1 2 3 4 5
integer
coifwavf
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------------------------
Family Name : BiorSplines
bior
2
1.1 1.3 1.5 2.2 2.4 2.6 2.8 3.1 3.3 3.5 3.7 3.9 4.4 5.5 6.8
real
biorwavf

------------------------
Family Name : ReverseBior
rbio
2
1.1 1.3 1.5 2.2 2.4 2.6 2.8 3.1 3.3 3.5 3.7 3.9 4.4 5.5 6.8
real
rbiowavf

------------------------
Family Name : Meyer
meyr
3
no
no
meyer
-8 8
------------------------
Family Name : DMeyer
dmey
1
no
no
dmey.mat

------------------------
Family Name : Gaussian
gaus
4
1 2 3 4 5 6 7 8 **
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integer
gauswavf
-5 5
------------------------
Family Name : Mexican_hat
mexh
4
no
no
mexihat
-8 8
-------------------------
Family Name : Morlet
morl
4
no
no
morlet
-8 8
------------------------
Family Name : Complex Gaussian
cgau
5
1 2 3 4 5 **
integer
cgauwavf
-5 5
------------------------
Family Name : Shannon
shan
5
1-1.5 1-1 1-0.5 1-0.1 2-3 **
string
shanwavf
-20 20
------------------------
Family Name : Frequency B-Spline
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fbsp
5
1-1-1.5 1-1-1 1-1-0.5 2-1-1 2-1-0.5 2-1-0.1 **
string
fbspwavf
-20 20
------------------------
Family Name : Complex Morlet
cmor
5
1-1.5 1-1 1-0.5 1-1 1-0.5 1-0.1 **
string
cmorwavf
-8 8
------------------------

See Also wavemngr

1-457



wavemenu

Purpose Wavelet Toolbox GUI tools

Syntax

Description wavemenu opens a menu for accessing the various graphical tools
provided in the Wavelet Toolbox software.

Examples wavemenu
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Purpose Wavelet manager

Syntax wavemngr('add',FN,FSN,WT,NUMS,FILE)
wavemngr('add',FN,FSN,WT,NUMS,FILE,B)
wavemngr('add',FN,FSN,WT,{NUMS,TYPNUMS},FILE)
wavemngr('add',FN,FSN,WT,{NUMS,TYPNUMS},FILE,B)

Description wavemngr is a type of wavelets manager. It allows you to add, delete,
restore, or read wavelets.

wavemngr('add',FN,FSN,WT,NUMS,FILE) or
wavemngr('add',FN,FSN,WT,NUMS,FILE,B) or
wavemngr('add',FN,FSN,WT,{NUMS,TYPNUMS},FILE) or
wavemngr('add',FN,FSN,WT,{NUMS,TYPNUMS},FILE,B), add a new
wavelet family to the toolbox.

FN = Family Name (string)

FSN = Family Short Name (string of length equal or less than four
characters)

WT defines the wavelet type:

• WT = 1, for orthogonal wavelets

• WT = 2, for biorthogonal wavelets

• WT = 3, for wavelet with scaling function

• WT = 4, for wavelet without scaling function

• WT = 5, for complex wavelet without scaling function

If the family contains a single wavelet, NUMS = ' '.

Examples:

mexh j

morl

If the wavelet is member of a finite family of wavelets, NUMS is a
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string containing a blank separated list of items representing wavelet
parameters.

Example:

bior NUMS = '1.1 1.3 ... 4.4 5.5 6.8'

If the wavelet is part of an infinite family of wavelets, NUMS is a
string containing a blank separated list of items representing wavelet
parameters, terminated by the special sequence **.

Examples:

db NUMS = '1 2 3 4 5 6 7 8 9 10
**'

shan NUMS = '1-1.5 1-1 1-0.5 1-0.1 2-3
**'

In these last two cases, TYPNUMS specifies the wavelet parameter
input format: 'integer' or 'real' or 'string'; the default value is
'integer'.

Examples:

db TYPNUMS = 'integer'

bior TYPNUMS = 'real'

shan TYPNUMS = 'string'

FILE = MAT-file or code file name (string). See usage in the “Examples”
section.

B = [lb ub] specifies lower and upper bounds of effective support for
wavelets of type = 3, 4, or 5.

This option is fully documented in “Adding Your Own Wavelets” in
the User’s Guide.
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wavemngr('del',N), deletes a wavelet or a wavelet family. N is the
Family Short Name or the Wavelet Name (in the family). N is a string.

wavemngr('restore') or wavemngr('restore',IN2) restores previous
or initial wavelets. If nargin = 1, the previous wavelets.asc
ASCII-file is restored; otherwise the initial wavelets.asc ASCII-file
is restored. Here IN2 is a dummy argument.

OUT1 = wavemngr('read') returns all wavelet family names.

OUT1 = wavemngr('read',IN2) returns all wavelet names, IN2 is a
dummy argument.

OUT1 = wavemngr('read_asc') reads wavelets.asc ASCII-file and
returns all wavelets information.

Examples % List initial wavelets families.
wavemngr('read')

ans =
===================================
Haar haar
Daubechies db
Symlets sym
Coiflets coif
BiorSplines bior
ReverseBior rbio
Meyer meyr
DMeyer dmey
Gaussian gaus
Mexican_hat mexh
Morlet morl
Complex Gaussian cgau
Shannon shan
Frequency B-Spline fbsp
Complex Morlet cmor
===================================
% List all wavelets.
wavemngr('read',1)
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ans =

===================================
Haar haar
===================================
Daubechies db
------------------------------
db1 db2 db3 db4
db5 db6 db7 db8
db9 db10 db**
===================================
Symlets sym
------------------------------
sym2 sym3 sym4 sym5
sym6 sym7 sym8 sym**
===================================
Coiflets coif
------------------------------
coif1 coif2 coif3 coif4
coif5
===================================
BiorSplines bior
------------------------------
bior1.1 bior1.3 bior1.5 bior2.2
bior2.4 bior2.6 bior2.8 bior3.1
bior3.3 bior3.5 bior3.7 bior3.9
bior4.4 bior5.5 bior6.8
===================================
ReverseBior rbio
------------------------------
rbio1.1 rbio1.3 rbio1.5 rbio2.2
rbio2.4 rbio2.6 rbio2.8 rbio3.1
rbio3.3 rbio3.5 rbio3.7 rbio3.9
rbio4.4 rbio5.5 rbio6.8
===================================
Meyer meyr

1-462



wavemngr

===================================
DMeyer dmey
===================================
Gaussian gaus
------------------------------
gaus1 gaus2 gaus3 gaus4
gaus5 gaus6 gaus7 gaus8
gaus**
===================================
Mexican_hat mexh
===================================
Morlet morl
===================================
Complex Gaussian cgau
------------------------------
cgau1 cgau2 cgau3 cgau4
cgau5 cgau**
===================================
Shannon shan
------------------------------
shan1-1.5 shan1-1 shan1-0.5 shan1-0.1
shan2-3 shan**
===================================
Frequency B-Spline fbsp
------------------------------
fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**
===================================
Complex Morlet cmor
------------------------------
cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1
cmor1-0.5 cmor1-0.1 cmor**
===================================

In the following example, new compactly supported orthogonal
wavelets are added to the toolbox. These wavelets, which are a slight
generalization of the Daubechies wavelets, are based on the use
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of Bernstein polynomials and are due to Kateb and Lemarié in an
unpublished work.

Note The files used in this example can be found in the wavedemo folder.

% Add new family of orthogonal wavelets.
% You must define:
%
% Family Name: Lemarie
% Family Short Name: lem
% Type of wavelet: 1 (orth)
% Wavelets numbers: 1 2 3 4 5
% File driver: lemwavf
%
% The function lemwavf.m must be as follows:
% function w = lemwavf(wname)
% where the input argument wname is a string:
% wname = 'lem1' or 'lem2' ... i.e.,
% wname = sh.name + number
% and w the corresponding scaling filter.
% The addition is obtained using:

wavemngr('add','Lemarie','lem',1,'1 2 3 4 5','lemwavf');

% The ascii file 'wavelets.asc' is saved as
% 'wavelets.prv', then it is modified and
% the MAT file 'wavelets.inf' is generated.

% List wavelets families.
wavemngr('read')

ans =
===================================
Haar haar
Daubechies db
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Symlets sym
Coiflets coif
BiorSplines bior
ReverseBior rbio
Meyer meyr
DMeyer dmey
Gaussian gaus
Mexican_hat mexh
Morlet morl
Complex Gaussian cgau
Shannon shan
Frequency B-Spline fbsp
Complex Morlet cmor
Lemarie lem
===================================
% Remove the added family.
wavemngr('del','Lemarie');

% List wavelets families.
wavemngr('read')

ans =
===================================
Haar haar
Daubechies db
Symlets sym
Coiflets coif
BiorSplines bior
ReverseBior rbio
Meyer meyr
DMeyer dmey
Gaussian gaus
Mexican_hat mexh
Morlet morl
Complex Gaussian cgau
Shannon shan
Frequency B-Spline fbsp
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Complex Morlet cmor
===================================
% Restore the previous ascii file
% 'wavelets.prv', then build
% the MAT-file 'wavelets.inf'.
wavemngr('restore');

% List restored wavelets.
wavemngr('read',1)

ans =
===================================
Haar haar
===================================
Daubechies db
------------------------------
db1 db2 db3 db4
db5 db6 db7 db8
db9 db10 db**
===================================
Symlets sym
------------------------------
sym2 sym3 sym4 sym5
sym6 sym7 sym8 sym**
===================================
Coiflets coif
------------------------------
coif1 coif2 coif3 coif4
coif5
===================================
BiorSplines bior
------------------------------
bior1.1 bior1.3 bior1.5 bior2.2
bior2.4 bior2.6 bior2.8 bior3.1
bior3.3 bior3.5 bior3.7 bior3.9
bior4.4 bior5.5 bior6.8
===================================
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ReverseBior rbio
------------------------------
rbio1.1 rbio1.3 rbio1.5 rbio2.2
rbio2.4 rbio2.6 rbio2.8 rbio3.1
rbio3.3 rbio3.5 rbio3.7 rbio3.9
rbio4.4 rbio5.5 rbio6.8
===================================
Meyer meyr
===================================
DMeyer dmey
===================================
Gaussian gaus
------------------------------
gaus1 gaus2 gaus3 gaus4
gaus5 gaus6 gaus7 gaus8
gaus**
===================================
Mexican_hat mexh
===================================
Morlet morl
===================================
Complex Gaussian cgau
------------------------------
cgau1 cgau2 cgau3 cgau4
cgau5 cgau**
===================================
Shannon shan
------------------------------
shan1-1.5 shan1-1 shan1-0.5 shan1-0.1
shan2-3 shan**
===================================
Frequency B-Spline fbsp
------------------------------
fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**
===================================
Complex Morlet cmor
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------------------------------
cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1
cmor1-0.5 cmor1-0.1 cmor**
===================================
Lemarie lem
------------------------------
lem1 lem2 lem3 lem4 lem5
===================================
% Restore initial wavelets.
%
% Restore the initial ascii file
% 'wavelets.ini' and initial
% MAT-file 'wavelets.bin'.
wavemngr('restore',0);

% List wavelets families.
wavemngr('read')

ans =
===================================
Haar haar
Daubechies db
Symlets sym
Coiflets coif
BiorSplines bior
ReverseBior rbio
Meyer meyr
DMeyer dmey
Gaussian gaus
Mexican_hat mexh
Morlet morl
Complex Gaussian cgau
Shannon shan
Frequency B-Spline fbsp
Complex Morlet cmor
===================================
% Add new family of orthogonal wavelets.
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wavemngr('add','Lemarie','lem',1,'1 2 3','lemwavf');

% All command line capabilities are available for
% the new wavelets.
%
% Example 1: compute the four associated filters.
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('lem3');

% Example 2: compute scale and wavelet functions.
[phi,psi,xval] = wavefun('lem3');

% Add a new family of orthogonal wavelets: special form
% for the GUI mode.
%
% The file lemwavf allows you to compute the filter for
% any order. If you want to get a popup of the form
% 1 2 3 **, associated with the family, then wavelets are
% appended for GUI mode using:

wavemngr('restore',0);
wavemngr('add','Lemarie','lem',1,'1 2 3 **','lemwavf');

% After this sequence, all GUI capabilities are available for
% the new wavelets.
% Note that the last command allows a short cut in the
% order definition only if possible orders are integers.

Caution wavemngr works on the current folder. If you add a new
wavelet family, it is available in this folder only. Refer to, “Adding Your
Own Wavelets”, in the User’s Guide.

Limitations wavemngr allows you to add a new wavelet. You must verify that it is
truly a wavelet. No check is performed either about this point or about
the type of the new wavelet.
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Purpose Wavelet names for LWT

Syntax W = wavenames(T)

Description W = wavenames(T) returns a cell array that contains the name of all
wavelets of type T. The valid values for T are

• 'all' — all wavelets

• 'lazy' — “lazy” wavelet

• 'orth' — orthogonal wavelets

• 'bior' — biorthogonal wavelets

W = wavenames is equivalent to W = wavenames('all').
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Purpose Multilevel 1-D wavelet reconstruction

Syntax X = waverec(C,L,Lo_R,Hi_R)
X = waverec(C,L,'wname')
X = appcoef(C,L,'wname',0)

Description waverec performs a multilevel one-dimensional wavelet reconstruction
using either a specific wavelet ('wname', see wfilters) or specific
reconstruction filters (Lo_R and Hi_R). .

Note waverec supports only Type 1 (orthogonal) or Type 2
(biorthogonal) wavelets.

X = waverec(C,L,'wname') reconstructs the signal X based on the
multilevel wavelet decomposition structure [C,L] and wavelet 'wname'.
(For information about the decomposition structure, see wavedec.)

X = waverec(C,L,Lo_R,Hi_R) reconstructs the signal X as above,
using the reconstruction filters you specify. Lo_R is the reconstruction
low-pass filter and Hi_R is the reconstruction high-pass filter.

Note that X = waverec(C,L,'wname') is equivalent to X =
appcoef(C,L,'wname',0).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original one-dimensional signal.
load leleccum; s = leleccum(1:3920); ls = length(s);

% Perform decomposition of signal at level 3 using db5.
[c,l] = wavedec(s,3,'db5');

% Reconstruct s from the wavelet decomposition structure [c,l].
a0 = waverec(c,l,'db5');
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% Check for perfect reconstruction.
err = norm(s-a0)
err =

3.2079e-09

See Also appcoef | idwt | wavedec

1-472



waverec2

Purpose Multilevel 2-D wavelet reconstruction

Syntax X = waverec2(C,S,'wname')
X = waverec2(C,S,Lo_R,Hi_R)
waverec2(wavedec2(X,N,'wname'),'wname')
X = waverec2(C,S,'wname')
X = appcoef2(C,S,'wname',0)

Description X = waverec2(C,S,'wname') performs a multilevel wavelet
reconstruction of the matrix X based on the wavelet decomposition
structure [C,S]. For detailed storage information, see wavedec2.
'wname' is a string containing the name of the wavelet. See wfilters
for more information.

Instead of specifying the wavelet name, you can specify the filters.

• X = waverec2(C,S,Lo_R,Hi_R), Lo_R is the reconstruction low-pass
filter

• Hi_R is the reconstruction high-pass filter.

waverec2 is the inverse function of wavedec2 in the sense that the
abstract statement waverec2(wavedec2(X,N,'wname'),'wname')
returns X.

X = waverec2(C,S,'wname') is equivalent to X =
appcoef2(C,S,'wname',0).

Tips If C and S are obtained from an indexed image analysis or a truecolor
image analysis, X is an m-by-n matrix or an m-by-n-by-3 array,
respectively.

For more information on image formats, see the image and imfinfo
reference pages.

Examples % The current extension mode is zero-padding (see dwtmode).
% Load original image.
load woman;
% X contains the loaded image.
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% Perform decomposition at level 2
% of X using sym4.
[c,s] = wavedec2(X,2,'sym4');
% Reconstruct X from the wavelet
% decomposition structure [c,s].
a0 = waverec2(c,s,'sym4');
% Check for perfect reconstruction.
max(max(abs(X-a0)))
ans =

2.5565e-10

See Also appcoef2 | idwt2 | wavedec2
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Purpose Multilevel 3-D wavelet reconstruction

Syntax X = waverec3(WDEC)
C = waverec3(WDEC,TYPE,N)
X = waverec3(WDEC,'a',0)
X = waverec3(WDEC,'ca',0)
C = waverec3(WDEC,TYPE)
C = waverec3(WDEC,TYPE,N)

Description waverec3 performs a multilevel 3-D wavelet reconstruction starting
from a multilevel 3-D wavelet decomposition.

X = waverec3(WDEC) reconstructs the 3-D array X based on the
multilevel wavelet decomposition structure WDEC. You can also use
waverec3 to extract coefficients from a 3-D wavelet decomposition.

WDEC is a structure with the fields shown in the table.

C = waverec3(WDEC,TYPE,N) reconstructs the multilevel components
at level N of a 3-D wavelet decomposition. N must be a positive integer
less than or equal to the level of the decomposition.

Valid values for TYPE are:

• A group of three characters 'xyz', one per direction, with 'x','y'
and 'z' selected in the set {'a', 'd', 'l', 'h'} or in the corresponding
uppercase set {'A','D', 'L', 'H'}), where 'A' (or 'L') is a low-pass
filter and 'D' (or 'H') is a high-pass filter.

• The char 'd' (or 'h' or 'D' or 'H') gives the sum of all the
components different from the low-pass.

• The char 'a' (or 'l' or 'A' or 'L') gives the low-pass component
(the approximation at level N).

For extraction, the valid values for TYPE are the same but prefixed
by 'c' or 'C'.

X = waverec3(WDEC,'a',0) or X = waverec3(WDEC,'ca',0) is
equivalent to X = waverec3(WDEC). X is a reconstruction of the
coefficients in WDEC at level 0.
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C = waverec3(WDEC,TYPE) is equivalent to C =
waverec3(WDEC,TYPE,N) with N equal to the level of the decomposition.

sizeINI Size of the three-dimensional array X

level Level of the decomposition

mode Name of the wavelet transform extension mode

filters Structure with 4 fields, LoD, HiD, LoR, HiR,
which contain the filters used for DWT

dec N x 1 cell array containing the coefficients of the
decomposition. N is equal to 7*WDEC.level+1.

dec{1} contains the lowpass component
(approximation) at the level of the
decomposition. The approximation is
equivalent to the filtering operations 'LLL'.

dec{k+2},...,dec{k+8} with k =
0,7,14,...,7*(WDEC.level-1) contain the
3-D wavelet coefficients for the multiresolution
starting with the coarsest level when k=0.

For example, if WDEC.level=3,
dec{2},...,dec{8} contain the
wavelet coefficients for level 3 (k=0),
dec{9},...,dec{15} contain the
wavelet coefficients for level 2 (k=7), and
dec{16},...,dec{22} contain the wavelet
coefficients for level 1 (k=7*(WDEC.level-1)).

At each level, the wavelet coefficients
in dec{k+2},...,dec{k+8}
are in the following order:
'HLL','LHL','HHL','LLH','HLH','LHH','HHH'.

The strings give the order in which the
separable filtering operations are applied from
left to right. For example, 'LHH' means that the
lowpass (scaling) filter with downsampling is
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applied to the rows of X, followed by the highpass
(wavelet) filter with downsampling applied
to the columns of X. Finally, the highpass
filter with downsampling is applied to the 3rd
dimension of X.

sizes Successive sizes of the decomposition
components

Examples Perfect Reconstruction with 3-D Discrete Wavelet Transform

Construct a 3-D matrix, obtain the wavelet transform down to level
2 using the db2 wavelet, and reconstruct the matrix to verify perfect
reconstruction.

Create 3-D matrix.

M = magic(8);
X = repmat(M,[1 1 8]);

Obtain the 3-D discrete wavelet transform of the matrix and reconstruct
the input based on the 3-D approximation and detail coefficients.

wd = wavedec3(X,2,'db2');
XR = waverec3(wd);

Verify perfect reconstruction using the wavelet decomposition down to
level 2.

err1 = max(abs(X(:)-XR(:)))

Verify that the data matrix is the sum of the approximation and the
details from levels 2 and 1.

A = waverec3(wd,'LLL');
% Reconstruct the sum of components different from
% the lowpass component.
D = waverec3(wd,'d');
% Check that X = A + D.
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err2 = max(abs(X(:)-A(:)-D(:)))

Compare waverec3 and idwt3

Compare level-1 reconstructions based on the filtering operations 'LLH'
using idwt3 and waverec3.

dwtOut = dwt3(X,'db2');
Xr = idwt3(dwtOut,'LLH');
Xrec = waverec3(wd,'LLH',1);
norm(Xr(:)-Xrec(:))

See Also idwt3 | waveinfo | wavedec3
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Purpose Wavelet support

Syntax [LB,UB] = wavsupport(wname)

Description [LB,UB] = wavsupport(wname) returns the lower bound, LB, and upper
bound, UB, of the support for the wavelet specified by wname. wname is
any valid wavelet. For real-valued wavelets with and without scaling
functions and complex-valued wavelets without scaling functions
(wavelets type 3,4, and 5), the bounds indicate the effective support of
the wavelet. For orthogonal and biorthogonal wavelets (type 1 and
type 2), the lower and upper bounds are -0.5*(LF-1) and 0.5*(LF-1),
where LF is the length of the wavelet filter.

Examples Support of Haar wavelet:

[LB, UB] = wavsupport('haar');
LowerBound = -0.5*(2-1);
UpperBound = 0.5*(2-1);
% Compare [LB,UB] and [LowerBound, UpperBound]

Effective support of complex-valued Gaussian wavelet:

[LB,UB] = wavsupport('cgau3');

See Also wavemngr
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Purpose Penalized threshold for wavelet 1-D or 2-D de-noising

Syntax THR = wbmpen(C,L,SIGMA,ALPHA)
wbmpen(C,L,SIGMA,ALPHA,ARG)

Description THR = wbmpen(C,L,SIGMA,ALPHA) returns global threshold THR for
de-noising. THR is obtained by a wavelet coefficients selection rule using
a penalization method provided by Birgé-Massart.

[C,L] is the wavelet decomposition structure of the signal or image
to be de-noised.

SIGMA is the standard deviation of the zero mean Gaussian white noise
in de-noising model (see wnoisest for more information).

ALPHA is a tuning parameter for the penalty term. It must be a real
number greater than 1. The sparsity of the wavelet representation of
the de-noised signal or image grows with ALPHA. Typically ALPHA = 2.

THR minimizes the penalized criterion given by

let t* be the minimizer of

crit(t) = -sum(c(k)^2,k t) + 2*SIGMA^2*t*(ALPHA + log(n/t))

where c(k) are the wavelet coefficients sorted in decreasing order of
their absolute value and n is the number of coefficients; then THR =
|c(t*)|.

wbmpen(C,L,SIGMA,ALPHA,ARG) computes the global threshold and, in
addition, plots three curves:

• 2*SIGMA^2*t*(ALPHA + log(n/t))

• sum(c(k)^2,k‹ t)

• crit(t)

Examples % Example 1: Signal de-noising.
% Load noisy bumps signal.
load noisbump; x = noisbump;
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% Perform a wavelet decomposition of the signal
% at level 5 using sym6.
wname = 'sym6'; lev = 5;
[c,l] = wavedec(x,lev,wname);
% Estimate the noise standard deviation from the
% detail coefficients at level 1, using wnoisest.
sigma = wnoisest(c,l,1);

% Use wbmpen for selecting global threshold
% for signal de-noising, using the tuning parameter.
alpha = 2;
thr = wbmpen(c,l,sigma,alpha)
thr =

2.7681

% Use wdencmp for de-noising the signal using the above
% threshold with soft thresholding and approximation kept.
keepapp = 1;
xd = wdencmp('gbl',c,l,wname,lev,thr,'s',keepapp);

% Plot original and de-noised signals.
figure(1)
subplot(211), plot(x), title('Original signal')
subplot(212), plot(xd), title('De-noised signal')

1-481



wbmpen

% Example 2: Image de-noising.
% Load original image.
load noiswom;
nbc = size(map,1);

% Perform a wavelet decomposition of the image
% at level 3 using coif2.
wname = 'coif2'; lev = 3;
[c,s] = wavedec2(X,lev,wname);

% Estimate the noise standard deviation from the
% detail coefficients at level 1.
det1 = detcoef2('compact',c,s,1);
sigma = median(abs(det1))/0.6745;

% Use wbmpen for selecting global threshold
% for image de-noising.
alpha = 1.2;
thr = wbmpen(c,l,sigma,alpha)
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thr =

36.0621

% Use wdencmp for de-noising the image using the above
% thresholds with soft thresholding and approximation kept.
keepapp = 1;
xd = wdencmp('gbl',c,s,wname,lev,thr,'s',keepapp);

% Plot original and de-noised images.
figure(2)
colormap(pink(nbc));
subplot(221), image(wcodemat(X,nbc))
title('Original image')
subplot(222), image(wcodemat(xd,nbc))
title('De-noised image')

See Also wden | wdencmp | wpbmpen | wpdencmp
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Purpose Extended pseudocolor matrix scaling

Syntax Y = wcodemat(X)
Y = wcodemat(X,NBCODES)
Y = wcodemat(X,NBCODES,OPT)
Y = wcodemat(X,NBCODES,OPT,ABSOL)

Description wcodemat rescales an input matrix to a specified range for display. If
the specified range is the full range of the current colormap, wcodemat
is similar in behavior to imagesc.

Y = wcodemat(X) rescales the matrix X to integers in the range [1,16].

Y = wcodemat(X,NBCODES) rescales the input X as integers in the range
[1,NBCODES] . The default value of NBCODES is 16.

Y = wcodemat(X,NBCODES,OPT) rescales the matrix along the
dimension specified by OPT. Valid strings for OPT are: 'column' (or 'c'),
'row' (or 'r'), and 'mat' (or 'm'). 'rows' scales X row-wise, 'column'
scales X column-wise, and 'mat' scales X globally. The default value
of OPT is 'mat'.

Y = wcodemat(X,NBCODES,OPT,ABSOL) rescales the input matrix X
based on the absolute values of the entries in X if ABSOL is nonzero, or
based on the signed values of X if ABSOL is equal to zero. The default
value of ABSOL is 1.

Examples Scale level-one approximation coefficients globally to the full range
of the colormap.

load woman;
% Get the range of the colormap
NBCOL = size(map,1);
% Obtain the 2D dwt using the Haar wavelet
[cA1,cH1,cV1,cD1] = dwt2(X,'db1');
% Display without scaling
image(cA1);
colormap(map);
title('Unscaled Image');
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figure;
% Display with scaling
image(wcodemat(cA1,NBCOL));
colormap(map);
title('Scaled Image');
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Purpose Wavelet coherence

Syntax WCOH = wcoher(Sig1,Sig2,Scales,wname)
WCOH = wcoher(...,Name,Value)
[WCOH,WCS] = wcoher(...)
[WCOH,WCS,CWT_S1,CWT_S2] = wcoher(...)
[...] = wcoh(...,'plot')

Description WCOH = wcoher(Sig1,Sig2,Scales,wname) returns the wavelet
coherence for the input signals Sig1 and Sig2 using the wavelet
specified in wname at the scales in Scales. The input signals must be
real-valued and equal in length.

WCOH = wcoher(...,Name,Value) returns the wavelet coherence
with additional options specified by one or more Name,Value pair
arguments.

[WCOH,WCS] = wcoher(...) returns the wavelet cross spectrum.

[WCOH,WCS,CWT_S1,CWT_S2] = wcoher(...) returns the continuous
wavelet transforms of Sig1 and Sig2.

[...] = wcoh(...,'plot') displays the modulus and phase of the
wavelet cross spectrum.

Input
Arguments

Sig1

A real-valued one-dimensional input signal. Sig1 is a row or column
vector.

Sig2

A real-valued one-dimensional input signal. Sig2 is a row or column
vector.

Scales

Scales is a vector of real-valued, positive scales at which to compute
the wavelet coherence.
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wname

Wavelet used in the wavelet coherence. wname is any valid wavelet
name.

Name-Value Pair Arguments

’asc’

Scale factor for arrows in quiver plot. wcoher represents the phase
using quiver. asc corresponds to the scale input argument in quiver.

Default: 1

’nas’

Number of arrows in scale. Together with the number of scales, nas
determines the spacing between the y coordinates in the input to quiver.
The y input to quiver is 1:length(Scales)/(nas-1):Scales(end)

Default: 20

’nsw’

Length of smoothing window in scale. nsw is a positive integer that
specifies the length of a moving average filter in scale.

Default: 1

’ntw’

Length of smoothing window in time. ntw is a positive integer that
specifies the length of a moving average filter in time.

Default: min[20,0.05*length(Sig1)]

’plot’

Type of plot. plot is one of the following strings:

• 'cwt'
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Displays the continuous wavelet transforms of signals 1 and 2.

• 'wcs'

Displays the wavelet cross spectrum.

• 'wcoh'

Displays the phase of the wavelet cross spectrum.

• 'all'

Displays all plots in separate figures.

Output
Arguments

WCOH

Wavelet coherence.

WCS

Wavelet cross spectrum.

CWT_S1

Continuous wavelet transform of signal 1.

CWT_S2

Continuous wavelet transform of signal 2.

Definitions Wavelet Cross Spectrum

The wavelet cross spectrum of two time series, x and y is:

C a b S C a b C a bxy x y( , ) ( ( , ) ( , ))*=

where Cx(a,b) and Cy(a,b) denote the continuous wavelet transforms of
x and y at scales a and positions b. The superscript * is the complex
conjugate and S is a smoothing operator in time and scale.
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For real-valued time series, the wavelet cross spectrum is real-valued if
you use a real-valued analyzing wavelet, and complex-valued if you use
a complex-valued analyzing wavelet.

Wavelet Coherence

The wavelet coherence of two time series x and y is:

S C a b C a b

S C a b S C a b

x y

x y

( ( , ) ( , ))

(| ( , )| ) (| ( , )| )

*

2 2

where Cx(a,b) and Cy(a,b) denote the continuous wavelet transforms of
x and y at scales a and positions b. The superscript * is the complex
conjugate and S is a smoothing operator in time and scale.

For real-valued time series, the wavelet coherence is real-valued if you
use a real-valued analyzing wavelet, and complex-valued if you use a
complex-valued analyzing wavelet.

Examples Wavelet coherence of sine waves in noise with delay:

t = linspace(0,1,2048);
x = sin(16*pi*t)+0.5*randn(1,2048);
y = sin(16*pi*t+pi/4)+0.5*randn(1,2048);
wname = 'cgau3';
scales = 1:512;
ntw = 21; % smoothing parameter
% Display the modulus and phased of the wavelet cross spectrum.
wcoher(x,y,scales,wname,'ntw',ntw,'plot');

Sine wave and Doppler signal:

t = linspace(0,1,1024);
x = -sin(8*pi*t) + 0.4*randn(1,1024);
x = x/max(abs(x));
y = wnoise('doppler',10);
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wname = 'cgau3';
scales = 1:512;
ntw = 21; % smoothing parameter
% Display of the CWT of the two signals.
wcoher(x,y,scales,wname,'ntw',ntw,'plot','cwt');
% Display of the wavelet cross spectrum.
wcoher(x,y,scales,wname,'ntw',ntw,'nsw',1,'plot','wcs');
% Display of the modulus and phased of the wavelet cross spectrum.
wcoher(x,y,scales,wname,'ntw',ntw,'plot');

References Grinsted, A, J.C. Moore, and S. Jevrejeva. “Application of the cross
wavelet transform and wavelet coherence to geophysical time series.
Nonlinear Processes in Geophysics. 11, 2004, pp. 561-566.

Torrence. C., and G. Compo. “A Practical Guide to Wavelet Analysis”.
Bulletin of the American Meteorological Society, 79, pp. 61-78.

See Also cwt

Tutorials • “1-D Continuous Wavelet Analysis”

• “One-Dimensional Complex Continuous Wavelet Analysis”

How To • Wavelet Coherence
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Purpose True compression of images using wavelets

Syntax wcompress('c',X,SAV_FILENAME,COMP_METHOD)
wcompress(...,'ParName1',ParVal1,'ParName2',ParVal2,...)
[COMPRAT,BPP] = wcompress('c',...)
XC = wcompress('u',SAV_FILENAME)
XC = wcompress('u',SAV_FILENAME,'plot')
XC = wcompress('u',SAV_FILENAME,'step')

Description The wcompress command performs either compression or uncompression
of grayscale or truecolor images.

More theoretical information on true compression is in “True
Compression for Images” of the Wavelet Toolbox User’s Guide.

Compression

wcompress('c',X,SAV_FILENAME,COMP_METHOD) compresses the image
X using the compression method COMP_METHOD.

The compressed image is saved in the file SAV_FILENAME. X can be
either a 2-D array containing an indexed image or a 3-D array of uint8
containing a truecolor image.

wcompress('c',FILENAME,...) loads the image X from the file
FILENAME which is a MATLAB Supported Format (MSF) file: MAT-file
or other image files (see imread).

wcompress('c',I,...) converts the indexed image X = I{1} to a
truecolor image Y using the colormap map = I{2} and then compresses
Y.

The valid compression methods are divided in three categories.

1 Progressive Coefficients Significance Methods (PCSM):

MATLAB Name Compression Method Name

'ezw' Embedded Zerotree Wavelet

'spiht' Set Partitioning In Hierarchical Trees
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MATLAB Name Compression Method Name

'stw' Spatial-orientation Tree Wavelet

'wdr' Wavelet Difference Reduction

'aswdr' Adaptively Scanned Wavelet Difference
Reduction

'spiht_3d' Set Partitioning In Hierarchical Trees 3D for
truecolor images

For more details on these methods, see the references and especially
Walker and also Said and Pearlman.

2 Coefficients Thresholding Methods (CTM-1):

MATLAB Name Compression Method Name

'lvl_mmc' Subband thresholding of coefficients and
Huffman encoding

For more details on this method, see the Strang and Nguyen reference.

3 Coefficients Thresholding Methods (CTM-2):

MATLAB Name Compression Method Name

'gbl_mmc_f' Global thresholding of coefficients and fixed
encoding

'gbl_mmc_h' Global thresholding of coefficients and
Huffman encoding

1-492



wcompress

Note The Discrete Wavelet Transform uses the periodized extension
mode. Each of the two dimensions of the image must be a power of 2.

All the compression methods use parameters which have default values.
You can change these values using the following syntax:

wcompress(...,'ParName1',ParVal1,'ParName2',ParVal2,...)

Some of the parameters are related to display or to data transform
functionalities. The others are linked to the compression process itself.

Data transform parameters

• 'ParName' = 'wname' or 'WNAME' sets the wavelet name.

ParVal is a string (see waveletfamilies). The default for is bior4.4

• 'ParName' = 'level' or 'LEVEL' sets the level of decomposition.

ParVal is an integer such that: 1 ≤ level ≤ levmax which is the
maximum possible level (see wmaxlev).

The default level depends on the method:

- for PCSM methods level is equal to levmax.

- for CTM methods level is equal to fix(levmax/2)

• ParName' = 'it' or 'IT' sets Image type Transform.

ParVal must be one of the following strings:

'n' : no transformation (default), image type (truecolor or grayscale)
is automatically detected.

'g' : grayscale transformation type.

'c' : color transformation type (RGB uint8).

• 'ParName' = 'cc' or 'CC' sets Color Conversion parameter if X is
a truecolor image.

ParVal must be one of the following strings:
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'rgb' or 'none' : No conversion (default).

'yuv' : YUV color space transform.

'klt' : Karhunen-Loeve transform.

'yiq' : YIQ color space transform.

'xyz' : CIEXYZ color space transform.

Parameter for Progressive Coefficients Significance Methods
(PCSM)

• 'ParName' = 'maxloop' or 'MAXLOOP' sets the maximum number of
steps for the compression algorithm.

ParVal must be a positive integer or Inf (default is 10).

Parameters for Coefficients Thresholding Methods (CTM-1)

Either of the following parameters may be used:

• 'ParName' = 'bpp' or 'BPP' sets the bit-per-pixel ratio.

ParVal must be such that 0 ≤ ParVal ≤ 8 (grayscale) or 24
(truecolor).

• 'ParName' = 'comprat' or 'COMPRAT' sets the compression ratio.

ParVal must be such that 0 ≤ ParVal ≤ 100.

Parameters for Coefficients Thresholding Methods (CTM-2)

Two parameters may be used. The first is related to the threshold and
the second is the number of classes for quantization.

The first one may be chosen among the five following parameters:

• 'ParName' = 'threshold' or 'THRESHOLD' sets the threshold value
for compression.

ParVal must be a positive (or zero) real number.

• 'ParName' = 'nbcfs' or 'NBCFS' sets the number of preserved
coefficients in the wavelet decomposition.
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ParVal must be an integer such that: 0 ≤ ParVal ≤ total number of
coefficients of wavelet decomposition.

• 'ParName' = 'percfs' or 'PERCFS' sets the percentage of preserved
coefficients in the wavelet decomposition.

ParVal must be a real number such that: 0 ≤ ParVal ≤ 100.

• 'ParName' = 'bpp' or 'BPP' sets the bit-per-pixel ratio.

ParVal must be such that: 0 ≤ ParVal ≤ 8 (grayscale) or 24
(truecolor)

• 'ParName' = 'comprat' or 'COMPRAT' sets the compression ratio.

ParVal must be such that: 0 ≤ ParVal ≤ 100.

The second parameter sets the number of classes for quantization:

• 'ParName' = 'nbclas' or 'NBCLAS' sets the number of classes.

ParVal must be a real number such that: 2 ≤ ParVal ≤ 200.

Display parameter

• 'ParName' = 'plotpar' or 'PLOTPAR' sets the plot parameter.

ParVal must be one of the following strings or numbers:

'plot' or 0: plots only the compressed image.

'step' or 1: displays each step of the encoding process (only for
PCSM methods).

[COMPRAT,BPP] = wcompress('c',...) returns the compression ratio
COMPRAT and the bit_per_pixel ratio BPP.

Uncompression

XC = wcompress('u',SAV_FILENAME) uncompresses the file
SAV_FILENAME and returns the image XC. Depending on the initial
compressed image, XC can be a 2-D array containing either an indexed
image or a 3-D array of uint8 containing a truecolor image.

XC = wcompress('u',SAV_FILENAME,'plot') plots the uncompressed
image.
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XC = wcompress('u',SAV_FILENAME,'step') shows the step-by-step
uncompression, only for PCSM methods.

Examples % Example 1: Compression and uncompression using
% basic parameters.
%
% This example demonstrates first how to compress the jpeg
% image arms.jpg using the 'stw' compression method and
% save it to the file: 'comp_arms.wtc'.

wcompress('c','arms.jpg','comp_arms.wtc','stw');

% Then, it shows how to load the stored image from
% the file 'comp_arms.wtc' and to display the step by
% step uncompression leading to the final image below.

wcompress('u','comp_arms.wtc','step');
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% Example 2: Compression and uncompression using
% advanced parameters.
%
% This example demonstrates how to compress a jpeg
% image using the 'aswdr' compression method and
% save it to the file: 'woodstatue.wtc'.
% During the compression process 3 parameters are used:
% - Conversion color (cc) set to Karhunen-Loeve transform 'klt'
% - Maximum number of loops (maxloop) set to 11
% - Plot type (plotpar) set to step by step display
% By the way two performance indicators are displayed:
% the compression ratio (cr) and the bit-per-pixel ratio (bpp).
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[cr,bpp] = wcompress('c','woodstatue.jpg','woodstatue.wtc', ...
'aswdr','cc','klt','maxloop',11,'plotpar','step')

cr =

3.0701

bpp =

0.7368
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% Then, it shows how to load the stored image from the
% file 'woodstatue.wtc' and to display the step by step
% uncompression process.

wcompress('u','woodstatue.wtc','step');
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delete('woodstatue.wtc')

% Example 3: Compression and uncompression of a grayscale image
% and computed MSE and PSNR error values.
%
% Two measures are commonly used to quantify the error between
% two images: the Mean Square Error(MSE) and the Peak Signal
% to Noise Ratio (PSNR) which is expressed in decibels.
%
% This example demonstrates how to compress the mask image using
% the 'spiht' compression method and save it to the 'mask.wtc'
% file.
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load mask;
[cr,bpp] = wcompress('c',X,'mask.wtc','spiht','maxloop',12)

cr =
2.8336

bpp =

0.2267

% Then, it shows how to load the stored image from the file
% 'mask.wtc', uncompress it and delete the file 'mask.wtc'.

Xc = wcompress('u','mask.wtc');
delete('mask.wtc')

% The orginal and compressed images are displayed.
colormap(pink(255))
subplot(1,2,1); image(X); title('Original image')
axis square
subplot(1,2,2); image(Xc); title('Compressed image')
axis square
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% Finally the MSE and the PSNR are computed.

D = abs(X-Xc).^2;
mse = sum(D(:))/numel(X)

mse =
33.6564

psnr = 10*log10(255*255/mse)

psnr =

32.8601
% Example 4: Compression and uncompression of a truecolor image
% and computed MSE and PSNR error values.
% Compression parameters are the same as those used for example 3,
% but using the 'spiht_3d' method give better performance yet.

X = imread('wpeppers.jpg');
[cr,bpp] = wcompress('c',X,'wpeppers.wtc','spiht','maxloop',12)

cr =
1.6527

bpp =
0.3966

Xc = wcompress('u','wpeppers.wtc');
delete('wpeppers.wtc')
subplot(1,2,1); image(X); title('Original image'), axis square
subplot(1,2,2); image(Xc); title('Compressed image'), axis square
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D = abs(double(X)-double(Xc)).^2;
mse = sum(D(:))/numel(X)

mse =

26.7808

psnr = 10*log10(255*255/mse)

psnr =

33.8526

References Christophe, E., C. Mailhes, P. Duhamel (2006), “Adaptation of
zerotrees using signed binary digit representations for 3 dimensional
image coding,” EURASIP Journal on Image and Video Processing,
2007, to appear in the special issue on Wavelets in Source Coding,
Communications, and Networks, Paper ID 54679.

Misiti, M., Y. Misiti, G. Oppenheim, J.-M. Poggi (2007), Wavelets and
their applications, ISTE DSP Series.
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and Systems for Video Technology, Vol. 6, No. 3, pp. 243–250.

Shapiro J.M. (1993), “Embedded image coding using zerotrees of
wavelet coefficients”,P IEEE Trans. Signal Proc., Vol. 41, No. 12,
pp. 3445–3462.

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks,
Wellesley-Cambridge Press.

Walker J.S. (1999), “Wavelet-Based Image Compression,” University
of Wisconsin, Eau Claire, Wisconsin, USA, , Sub-chapter of CRC Press
book: Transform and Data Compression. A Primer on Wavelets and
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See Also imread | imwrite | wmaxlev
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Purpose Thresholds for wavelet 1-D using Birgé-Massart strategy

Syntax [THR,NKEEP] = wdcbm(C,L,ALPHA,M)
wdcbm(C,L,ALPHA)
wdcbm(C,L,ALPHA,L(1))

Description [THR,NKEEP] = wdcbm(C,L,ALPHA,M) returns level-dependent
thresholds THR and numbers of coefficients to be kept NKEEP, for
de-noising or compression. THR is obtained using a wavelet coefficients
selection rule based on the Birgé-Massart strategy.

[C,L] is the wavelet decomposition structure of the signal to be
de-noised or compressed, at level j = length(L)-2. ALPHA and M must
be real numbers greater than 1.

THR is a vector of length j; THR(i) contains the threshold for level i.

NKEEP is a vector of length j; NKEEP(i) contains the number of
coefficients to be kept at level i.

j, M and ALPHA define the strategy:

• At level j+1 (and coarser levels), everything is kept.

• For level i from 1 to j, the ni largest coefficients are kept with
ni = M (j+2-i)ALPHA.

Typically ALPHA = 1.5 for compression and ALPHA = 3 for de-noising.

A default value for M is M = L(1), the number of the coarsest
approximation coefficients, since the previous formula leads for i = j+1,
to nj+1 = M = L(1). Recommended values for M are from L(1) to 2*L(1).

wdcbm(C,L,ALPHA) is equivalent to wdcbm(C,L,ALPHA,L(1)).

Examples % Load electrical signal and select a part of it.
load leleccum; indx = 2600:3100;
x = leleccum(indx);

% Perform a wavelet decomposition of the signal
% at level 5 using db3.
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wname = 'db3'; lev = 5;
[c,l] = wavedec(x,lev,wname);

% Use wdcbm for selecting level dependent thresholds
% for signal compression using the adviced parameters.
alpha = 1.5; m = l(1);
[thr,nkeep] = wdcbm(c,l,alpha,m)

thr =
19.5569 17.1415 20.2599 42.8959 15.0049

nkeep =
1 2 3 4 7

% Use wdencmp for compressing the signal using the above
% thresholds with hard thresholding.
[xd,cxd,lxd,perf0,perfl2] = ...

wdencmp('lvd',c,l,wname,lev,thr,'h');

% Plot original and compressed signals.
subplot(211), plot(indx,x), title('Original signal');
subplot(212), plot(indx,xd), title('Compressed signal');
xlab1 = ['2-norm rec.: ',num2str(perfl2)];
xlab2 = [' % -- zero cfs: ',num2str(perf0), ' %'];
xlabel([xlab1 xlab2]);
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References Birgé, L.; P. Massart (1997), “From model selection to adaptive
estimation,” in D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp.
55–88.

See Also wden | wdencmp | wpdencmp

1-508



wdcbm2

Purpose Thresholds for wavelet 2-D using Birgé-Massart strategy

Syntax [THR,NKEEP] = wdcbm2(C,S,ALPHA,M)
wdcbm2(C,S,ALPHA)
wdcbm2(C,S,ALPHA,prod(S(1,:)))

Description [THR,NKEEP] = wdcbm2(C,S,ALPHA,M) returns level-dependent
thresholds THR and numbers of coefficients to be kept NKEEP, for
de-noising or compression. THR is obtained using a wavelet coefficients
selection rule based on the Birgé-Massart strategy.

[C,S] is the wavelet decomposition structure of the image to be
de-noised or compressed, at level j = size(S,1)-2.

ALPHA and M must be real numbers greater than 1.

THR is a matrix 3 by j; THR(:,i) contains the level dependent thresholds
in the three orientations: horizontal, diagonal, and vertical, for level i.

NKEEP is a vector of length j; NKEEP(i) contains the number of
coefficients to be kept at level i.

j, M and ALPHA define the strategy:

• At level j+1 (and coarser levels), everything is kept.

• For level i from 1 to j, the ni largest coefficients are kept with
ni = M (j+2-i)ALPHA.

Typically ALPHA = 1.5 for compression and ALPHA = 3 for de-noising.

A default value for M is M = prod(S(1,:)), the length of the coarsest
approximation coefficients, since the previous formula leads for i = j+1,
to nj+1 = M = prod(S(1,:)).

Recommended values for M are from prod(S(1,:)) to 6*prod(S(1,:)).

wdcbm2(C,S,ALPHA) is equivalent to
wdcbm2(C,S,ALPHA,prod(S(1,:))).

Examples % Load original image.
load detfingr;
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nbc = size(map,1);

% Perform a wavelet decomposition of the image
% at level 3 using sym4.
wname = 'sym4'; lev = 3;
[c,s] = wavedec2(X,lev,wname);

% Use wdcbm2 for selecting level dependent thresholds
% for image compression using the adviced parameters.
alpha = 1.5; m = 2.7*prod(s(1,:));
[thr,nkeep] = wdcbm2(c,s,alpha,m)

thr =
21.4814 46.8354 40.7907
21.4814 46.8354 40.7907
21.4814 46.8354 40.7907

nkeep =
624 961 1765

% Use wdencmp for compressing the image using the above
% thresholds with hard thresholding.
[xd,cxd,sxd,perf0,perfl2] = ...

wdencmp('lvd',c,s,wname,lev,thr,'h');

% Plot original and compressed images.
colormap(pink(nbc));
subplot(221), image(wcodemat(X,nbc)),
title('Original image')
subplot(222), image(wcodemat(xd,nbc)),
title('Compressed image')
xlab1 = ['2-norm rec.: ',num2str(perfl2)];
xlab2 = [' % -- zero cfs: ',num2str(perf0), ' %'];
xlabel([xlab1 xlab2]);
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References Birgé, L.; P. Massart (1997). “From model selection to adaptive
estimation,” in D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp.
55–88.

See Also wdencmp | wpdencmp
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Purpose Multisignal 1-D decomposition energy distribution

Syntax [E,PEC,PECFS] = wdecenergy(DEC)
[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,'sort')
[E,PEC,PECFS] = wdecenergy(DEC,OPTSORT,IDXSIG)
[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,OPTSORT,IDXSIG)

Description [E,PEC,PECFS] = wdecenergy(DEC) computes the vector E that
contains the energy (L2-Norm) of each decomposed signal, the matrix
PEC that contains the percentage of energy for each wavelet component
(approximation and details) of each signal, and the matrix PECFS that
contains the percentage of energy for each coefficient.

• E(i) is the energy (L2-norm) of the ith signal.

• PEC(i,1) is the percentage of energy for the approximation of level
MAXLEV = DEC.level of the ith signal.

• PEC(i,j), j=2,...,MAXLEV+1 is the percentage of energy for the detail
of level (MAXLEV+1-j) of the ith signal.

• PECFS(i,j), is the percentage of energy for jth coefficients of the ith
signal.

[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,'sort') returns
PECFS sorted (by row) in ascending order and an index vector
IDXSORT.

• Replacing ’sort’ by ’ascend’ returns the same result.

• Replacing ’sort’ by ’descend’ returns PECFS sorted in descending
order.

LONGS is a vector containing the lengths of each family of coefficients.

[E,PEC,PECFS] = wdecenergy(DEC,OPTSORT,IDXSIG) returns the
values for the signals whose indices are given by the IDXSIG vector.

[E,PEC,PECFS,IDXSORT,LONGS] =
wdecenergy(DEC,OPTSORT,IDXSIG) returns the values for the
signals whose indices are given by the IDXSIG vector, the index
vector IDXSORT, and LONGS, which is a vector containing the
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lengths of each family of coefficients. Valid values for OPTSORT are
’none’, ’sort’, ’ascend’, ’descend’.

Examples % Load original 1D-multisignal.
load thinker
% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2');
% Compute the energy distribution.
[E,PEC,PECFS] = wdecenergy(dec);
% Display the total energy and the distribution of energy
% for each wavelet component (A2, D2, D1).
E31 = E(31)
perA2D2D1 = PEC(31,:)
% Compare the coefficient energy distribution
% for signal 1 and signal 31.
PECFS_1 = PECFS(1,:);
PECFS_31 = PECFS(31,:);
figure;
plot(PECFS_1,'--r','linewidth',2); hold on
plot(PECFS_31,'b','linewidth',2);
grid; set(gca,'Xlim',[1,size(PECFS,2)])
title('PECFS1 dashed line and PECFS31 solid line')

1-513



wdecenergy

See Also mdwtdec | mdwtrec
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Purpose Automatic 1-D de-noising

Syntax [XD,CXD,LXD] = wden(X,TPTR,SORH,SCAL,N,'wname')
[XD,CXD,LXD] = wden(C,L,TPTR,SORH,SCAL,N,'wname')

Description wden is a one-dimensional de-noising function.

wden performs an automatic de-noising process of a one-dimensional
signal using wavelets.

[XD,CXD,LXD] = wden(X,TPTR,SORH,SCAL,N,'wname') returns a
de-noised version XD of input signal X obtained by thresholding the
wavelet coefficients.

Additional output arguments [CXD,LXD] are the wavelet decomposition
structure (see wavedec for more information) of the de-noised signal XD.

TPTR string contains the threshold selection rule:

• 'rigrsure' uses the principle of Stein’s Unbiased Risk.

• 'heursure' is an heuristic variant of the first option.

• 'sqtwolog' for the universal threshold 2ln(•)

• 'minimaxi' for minimax thresholding (see thselect for more
information)

SORH ('s' or 'h') is for soft or hard thresholding (see wthresh for more
information).

SCAL defines multiplicative threshold rescaling:

'one' for no rescaling

'sln' for rescaling using a single estimation of level noise based on
first-level coefficients

'mln' for rescaling done using level-dependent estimation of level noise

Wavelet decomposition is performed at level N and 'wname' is a string
containing the name of the desired orthogonal wavelet (see wmaxlev and
wfilters for more information).
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[XD,CXD,LXD] = wden(C,L,TPTR,SORH,SCAL,N,'wname') returns the
same output arguments, using the same options as above, but obtained
directly from the input wavelet decomposition structure [C,L] of the
signal to be de-noised, at level N and using 'wname' orthogonal wavelet.

The underlying model for the noisy signal is basically of the following
form:

s n f n e n( ) ( ) ( ) 

where time n is equally spaced.

In the simplest model, suppose that e(n) is a Gaussian white noise
N(0,1) and the noise level σ a is supposed to be equal to 1.

The de-noising objective is to suppress the noise part of the signal s
and to recover f.

The de-noising procedure proceeds in three steps:

1 Decomposition. Choose a wavelet, and choose a level N. Compute the
wavelet decomposition of the signal s at level N.

2 Detail coefficients thresholding. For each level from 1 to N, select a
threshold and apply soft thresholding to the detail coefficients.

3 Reconstruction. Compute wavelet reconstruction based on the
original approximation coefficients of level N and the modified detail
coefficients of levels from 1 to N.

More details about threshold selection rules are in “Denoising and
Nonparametric Function Estimation”, in the User’s Guide, and in the
help of the thselect function. Let us point out that

• The detail coefficients vector is the superposition of the coefficients
of f and the coefficients of e, and that the decomposition of e leads to
detail coefficients that are standard Gaussian white noises.

• Minimax and SURE threshold selection rules are more conservative
and are more convenient when small details of function f lie in the
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noise range. The two other rules remove the noise more efficiently.
The option 'heursure' is a compromise.

In practice, the basic model cannot be used directly. This section
examines the options available, to deal with model deviations. The
remaining parameter scal has to be specified. It corresponds to
threshold rescaling methods.

• Option scal = 'one' corresponds to the basic model.

• In general, you can ignore the noise level that must be estimated.
The detail coefficients CD1 (the finest scale) are essentially noise
coefficients with standard deviation equal to σ. The median absolute
deviation of the coefficients is a robust estimate of σ. The use of
a robust estimate is crucial because if level 1 coefficients contain f
details, these details are concentrated in few coefficients to avoid
signal end effects, which are pure artifacts due to computations on
the edges.

• The option scal = 'sln' handles threshold rescaling using a single
estimation of level noise based on the first-level coefficients.

• When you suspect a nonwhite noise e, thresholds must be rescaled
by a level-dependent estimation of the level noise. The same kind of
strategy is used by estimating σlev level by level. This estimation
is implemented in the file wnoisest, which handles the wavelet
decomposition structure of the original signal s directly.

• The option scal = 'mln' handles threshold rescaling using a
level-dependent estimation of the level noise.

Examples % The current extension mode is zero-padding (see dwtmode).

% Set signal to noise ratio and set rand seed.
snr = 3; init = 2055615866;

% Generate original signal and a noisy version adding
% a standard Gaussian white noise.
[xref,x] = wnoise(3,11,snr,init);
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% De-noise noisy signal using soft heuristic SURE thresholding
% and scaled noise option, on detail coefficients obtained
% from the decomposition of x, at level 5 by sym8 wavelet.
lev = 5;
xd = wden(x,'heursure','s','one',lev,'sym8');

% Plot signals.
subplot(611), plot(xref), axis([1 2048 -10 10]);
title('Original signal');
subplot(612), plot(x), axis([1 2048 -10 10]);
title(['Noisy signal - Signal to noise ratio = ',...
num2str(fix(snr))]);
subplot(613), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - heuristic SURE');

% De-noise noisy signal using soft SURE thresholding
xd = wden(x,'heursure','s','one',lev,'sym8');

% Plot signal.
subplot(614), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - SURE');

% De-noise noisy signal using fixed form threshold with
% a single level estimation of noise standard deviation.
xd = wden(x,'sqtwolog','s','sln',lev,'sym8');

% Plot signal.
subplot(615), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - Fixed form threshold');

% De-noise noisy signal using minimax threshold with
% a multiple level estimation of noise standard deviation.
xd = wden(x,'minimaxi','s','sln',lev,'sym8');

% Plot signal.
subplot(616), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - Minimax');
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% If many trials are necessary, it is better to perform
% decomposition once and threshold it many times:

% decomposition.
[c,l] = wavedec(x,lev,'sym8');

% threshold the decomposition structure [c,l].
xd = wden(c,l,'minimaxi','s','sln',lev,'sym8');

% Editing some graphical properties,
% the following figure is generated.
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References Antoniadis, A.; G. Oppenheim, Eds. (1995), Wavelets and statistics, 103,
Lecture Notes in Statistics, Springer Verlag.

Donoho, D.L. (1993), “Progress in wavelet analysis and WVD: a ten
minute tour,” in Progress in wavelet analysis and applications, Y.
Meyer, S. Roques, pp. 109–128. Frontières Ed.

Donoho, D.L.; I.M. Johnstone (1994), “Ideal spatial adaptation by
wavelet shrinkage,” Biometrika, Vol. 81, pp. 425–455.

Donoho, D.L. (1995), “De-noising by soft-thresholding,” IEEE Trans. on
Inf. Theory, 42 3, pp. 613– 627.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995),
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See Also thselect | wavedec | wdencmp | wfilters | wthresh

1-520



wdencmp

Purpose De-noising or compression

Syntax [XC,CXC,LXC,PERF0,PERFL2] = wdencmp('gbl',X,'wname',N,THR,
SORH,KEEPAPP)

wdencmp('gbl',C,L,'wname',N,THR,SORH,KEEPAPP)
[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',X,'wname',N,THR,

SORH)
[XC,CXC,LXC,PERF0,PERFL2] =
wdencmp('lvd',C,L,'wname',N,THR,

SORH)
[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',X,'wname',N,THR,

SORH)
[XC,CXC,LXC,PERF0,PERFL2] =
wdencmp('lvd',C,L,'wname',N,THR,

SORH)

Description wdencmp is a one- or two-dimensional de-noising and
compression-oriented function.

wdencmp performs a de-noising or compression process of a signal or
an image, using wavelets.

[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('gbl',X,'wname',N,THR,
SORH,KEEPAPP) returns a de-noised or compressed version XC of input
signal X (one- or two-dimensional) obtained by wavelet coefficients
thresholding using global positive threshold THR.

Additional output arguments [CXC,LXC] are the wavelet decomposition
structure of XC (see wavedec or wavedec2 for more information). PERF0
and PERFL2 are L2 -norm recovery and compression score in percentage.

PERFL2 = 100 * (vector-norm of CXC / vector-norm of C)2 if [C,L] denotes
the wavelet decomposition structure of X.

If X is a one-dimensional signal and 'wname' an orthogonal wavelet,
PERFL2 is reduced to
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100 2

2

XC

X

Wavelet decomposition is performed at level N and 'wname' is a
string containing wavelet name (see wmaxlev and wfilters for more
information). SORH ('s' or 'h') is for soft or hard thresholding
(see wthresh for more information). If KEEPAPP = 1, approximation
coefficients cannot be thresholded, otherwise it is possible.

wdencmp('gbl',C,L,'wname',N,THR,SORH,KEEPAPP) has the same
output arguments, using the same options as above, but obtained
directly from the input wavelet decomposition structure [C,L] of the
signal to be de-noised or compressed, at level N and using 'wname'
wavelet.

For the one-dimensional case and 'lvd' option,
[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',X,'wname',N,THR,
SORH) or [XC,CXC,LXC,PERF0,PERFL2] =
wdencmp('lvd',C,L,'wname',N,THR, SORH) have the same
output arguments, using the same options as above, but allowing
level-dependent thresholds contained in vector THR (THR must be of
length N). In addition, the approximation is kept. Note that, with
respect to wden (automatic de-noising), wdencmp allows more flexibility
and you can implement your own de-noising strategy.

For the two-dimensional case and 'lvd' option,
[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',X,'wname',N,THR,
SORH) or [XC,CXC,LXC,PERF0,PERFL2] =
wdencmp('lvd',C,L,'wname',N,THR, SORH).

THR must be a matrix 3 by N containing the level-dependent thresholds
in the three orientations, horizontal, diagonal, and vertical.

Like denoising, the compression procedure contains three steps:

1 Decomposition.

2 Detail coefficient thresholding. For each level from 1 to N, a threshold
is selected and hard thresholding is applied to the detail coefficients.
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3 Reconstruction.

The difference with the denoising procedure is found in step 2.

Examples Denoise Image Using Default Global Threshold

Denoise an image in additive white Gaussian noise using the
Donoho-Johnstone universal threshold.

Load the image and add white Gaussian noise.

load sinsin;
Y = X + 18*randn(size(X));

Use ddencmp to obtain the threshold and denoise the image. Plot the
original image, noisy image, and denoised result.

[thr,sorh,keepapp] = ddencmp('den','wv',Y);
xd = wdencmp('gbl',Y,'sym4',2,thr,sorh,keepapp);
subplot(221)
imagesc(X); title('Original Image');
subplot(222);
imagesc(Y); title('Noisy Image');
subplot(223)
imagesc(xd); title('Denoised Image');

Denoise 1-D Signal Using Default Global Threshold

Denoise 1-D electricity consumption data using the Donoho-Johnstone
global threshold.

Load the signal and select a segment for denoising.

load leleccum; indx = 2600:3100;
x = leleccum(indx);

Use ddencmp to determine the default global threshold and denoise the
signal. Plot the original and denoised signals.

[thr,sorh,keepapp] = ddencmp('den','wv',x);
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xd = wdencmp('gbl',x,'db3',2,thr,sorh,keepapp);
subplot(211)
plot(x); title('Original Signal');
subplot(212)
plot(xd); title('Denoised Signal');

References DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), “Image compression
through wavelet transform coding,” IEEE Trans. on Inf. Theory, vol.
38, No 2, pp. 719–746.

Donoho, D.L. (1993), “Progress in wavelet analysis and WVD: a ten
minute tour,” in Progress in wavelet analysis and applications, Y.
Meyer, S. Roques, pp. 109–128. Frontières Ed.

Donoho, D.L.; I.M. Johnstone (1994), “Ideal spatial adaptation by
wavelet shrinkage,” Biometrika, vol. 81, pp. 425–455.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995),
“Wavelet shrinkage: asymptopia,” Jour. Roy. Stat. Soc., series B, vol.
57 no. 2, pp. 301–369.

Donoho, D.L.; I.M. Johnstone, “Ideal de-noising in an orthonormal
basis chosen from a library of bases,” C.R.A.S. Paris, t. 319, Ser. I,
pp. 1317–1322.

Donoho, D.L. (1995), “De-noising by soft-thresholding,” IEEE Trans. on
Inf. Theory, 41, 3, pp. 613–627.

See Also ddencmp | wavedec | wavedec2 | wbmpen | wcompress | wdcbm2 | wden
| wpdencmp | wthresh
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Purpose Energy for 1-D wavelet or wavelet packet decomposition

Syntax [Ea,Ed] = wenergy(C,L)
E = wenergy(T)

Description For a one-dimensional wavelet decomposition [C,L] (see wavedec for
details), [Ea,Ed] = wenergy(C,L) returns Ea, which is the percentage
of energy corresponding to the approximation and Ed, which is the
vector containing the percentages of energy corresponding to the details.

For a wavelet packet tree T (see wptree, wpdec, wpdec2), E =
wenergy(T) returns a vector E, which contains the percentages of
energy corresponding to the terminal nodes of the tree T. In this case,
wenergy is a method of the wptree object T, which overloads the
previous wenergy function.

Examples % Example 1: 1-D wavelet decomposition
%-------------------------------------
load noisbump
[C,L] = wavedec(noisbump,4,'sym4');
[Ea,Ed] = wenergy(C,L)

Ea =

88.2860

Ed =

2.1560 1.2286 1.4664 6.8630

% Example 2: 1-D wavelet packet decomposition
%--------------------------------------------
load noisbump
T = wpdec(noisbump,3,'sym4');
E = wenergy(T)

E =
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95.0329 1.4664 0.6100 0.6408 0.5935 0.5445 0.5154
0.5965
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Purpose Energy for 2-D wavelet decomposition

Syntax [Ea,Eh,Ev,Ed] = wenergy2(C,S)
[Ea,EDetail] = wenergy2(C,S)

Description For a two-dimensional wavelet decomposition [C,S] (see wavedec2 for
details), [Ea,Eh,Ev,Ed] = wenergy2(C,S) returns Ea, which is the
percentage of energy corresponding to the approximation, and vectors
Eh, Ev, Ed, which contain the percentages of energy corresponding to the
horizontal, vertical, and diagonal details, respectively.

[Ea,EDetail] = wenergy2(C,S) returns Ea, and EDetail, which is
the sum of vectors Eh, Ev, and Ed.

Examples load detail
[C,S] = wavedec2(X,2,'sym4');
[Ea,Eh,Ev,Ed] = wenergy2(C,S)

Ea =
89.3520

Eh =
1.8748 2.7360

Ev =
1.5860 2.6042

Ed =
0.7539 1.0932

[Ea,EDetails] = wenergy2(C,S)

Ea =
89.3520

EDetails =
4.2147 6.4334
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Purpose Entropy (wavelet packet)

Syntax E = wentropy(X,T,P)
E = wentropy(X,T)
E = wentropy(X,T,0)

Description E = wentropy(X,T,P) returns the entropy E of the vector or matrix
input X. In both cases, output E is a real number.

E = wentropy(X,T) is equivalent to E = wentropy(X,T,0).

T is a string containing the type of entropy and P is an optional
parameter depending on the value of T.

Entropy Type
Name (T) Parameter (P) Comments

'shannon' P is not used.

'log energy' P is not used.

'threshold' 0 P P is the threshold.

'sure' 0 P P is the threshold.

'norm' 1 P P is the power.

'user' string P is a string containing the
file name of your own entropy
function, with a single input X.

FunName No constraints
on P

FunName is any other string
except those used for the
previous Entropy Type Names
listed above.

FunName contains the file name
of your own entropy function,
with X as input and P as
additional parameter to your
entropy function.

1-528



wentropy

Note The 'user' option is historical and still kept for compatibility,
but it is obsoleted by the last option described in the table above. The
FunName option do the same as the 'user' option and in addition gives
the possibility to pass a parameter to your own entropy function.

Functionals verifying an additive-type property are well suited for
efficient searching of binary-tree structures and the fundamental
splitting property of the wavelet packets decomposition. Classical
entropy-based criteria match these conditions and describe
information-related properties for an accurate representation of a
given signal. Entropy is a common concept in many fields, mainly
in signal processing. The following example lists different entropy
criteria. Many others are available and can be easily integrated. In the
following expressions, s is the signal and (si)i the coefficients of s in an
orthonormal basis.

The entropy E must be an additive cost function such that E(0) = 0 and

• The (nonnormalized) Shannon entropy.

so

with the convention 0log(0) = 0.

• The concentration in lp norm entropy with 1 ≤ p.

E2(si ) = |si|
p so
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• The “log energy” entropy.

so

with the convention log(0) = 0.

• The threshold entropy.

E4(si) = 1 if |si| > p and 0 elsewhere so E4(s) = #{i such that |si |
> p} is the number of time instants when the signal is greater than
a threshold p.

• The “SURE” entropy.

E5(s) = n - #{i such that

For more information, see the section “Wavelet Packets for
Compression and De-Noising” of the User’s Guide.

Examples % The current extension mode is zero-padding (see dwtmode).

% Generate initial signal.
x = randn(1,200);

% Compute Shannon entropy of x.
e = wentropy(x,'shannon')

e =
-142.7607

% Compute log energy entropy of x.
e = wentropy(x,'log energy')
e =

-281.8975
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% Compute threshold entropy of x
% with threshold equal to 0.2.
e = wentropy(x,'threshold',0.2)
e =

162

% Compute Sure entropy of x
% with threshold equal to 3.
e = wentropy(x,'sure',3)
e =
-0.6575

% Compute norm entropy of x with power equal to 1.1.
e = wentropy(x,'norm',1.1)
e =
160.1583

% Compute user entropy of x with a user defined
% function: userent for example.
% This function must be a code file, with first line
% of the following form:
%
% function e = userent(x)
%
% where x is a vector and e is a real number.
% Then a new entropy is defined and can be used typing:
%
% e = wentropy(x,'user','userent')
%
% or more directly
%
% e = wentropy(x,'userent')

References Coifman, R.R.; M.V. Wickerhauser (1992), “Entropy-based Algorithms
for best basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp.
713–718.
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Donoho, D.L.; I.M. Johnstone, “Ideal de-noising in an orthonormal
basis chosen from a library of bases,” C.R.A.S. Paris, Ser. I, t. 319,
pp. 1317–1322.
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Purpose Extend vector or matrix

Syntax

Description The valid extension types (TYPE) are listed in the table below.

TYPE Description

1, '1', '1d' or '1D' 1-D extension

2, '2', '2d' or '2D' 2-D extension

'ar' or 'addrow' Add rows

'ac' or 'addcol' Add columns

The valid extension modes (MODE) are listed in the table below.

MODE Description

'zpd' Zero extension

'sp0' Smooth extension of order 0

'spd' (or 'sp1') Smooth extension of order 1

'sym' or 'symh' Symmetric-padding (half-point): boundary
value symmetric replication

'symw' Symmetric-padding (whole-point): boundary
value symmetric replication

'asym' or 'asymh' Antisymmetric-padding (half-point):
boundary value antisymmetric replication

'asymw' Antisymmetric-padding (whole-point):
boundary value antisymmetric replication
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MODE Description

'ppd' Periodized extension (1)

'per' Periodized extension (2):

If the signal length is odd, wextend adds
an extra sample, equal to the last value,
on the right and performs extension using
the 'ppd' mode. Otherwise, 'per' reduces
to 'ppd'. The same kind of rule stands for
images.

With TYPE = {1, '1', '1d' or '1D'}:

• LOC = 'l' (or 'u') for left (or up) extension.

• LOC = 'r' (or 'd') for right (or down) extension.

• LOC = 'b' for extension on both sides.

• LOC = 'n' null extension.

• The default is LOC = 'b'.

• L is the length of the extension.

With TYPE = {'ar', 'addrow'}:

• LOC is a 1D extension location.

• The default is LOC = 'b'.

• L is the number of rows to add.

With TYPE = {'ac', 'addcol'}:

• LOC is a 1D extension location.

• The default is LOC = 'b'.

• L is the number of columns to add.

With TYPE = {2, '2', '2d' or '2D'}:

1-534



wextend

• LOC = [LOCROW,LOCCOL] where LOCROW and LOCCOL are 1D extension
locations or 'n' (none).

• The default is LOC = 'bb'.

• L = [LROW,LCOL] where LROW is the number of rows to add and LCOL
is the number of columns to add.

For more information on symmetric extension modes see “References”.

Examples % Original signal.
x = [1 2 3]

x =

1 2 3

% 1-D extension length.
l = 2;

% Zero-padding extensions 1-D.
xextzpd1 = wextend('1','zpd',x,l)
xextzpd1 =

0 0 1 2 3 0 0

xextzpd2 = wextend('1D','zpd',x,l,'b')

xextzpd2 =

0 0 1 2 3 0 0

% Symmetric extension 1-D.
xextsym = wextend('1D','sym',x,l)

xextsym =

2 1 1 2 3 3 2
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% Periodic extension 1-D.
xextper = wextend('1D','per',x,l)

xextper =

3 3 1 2 3 3 1 2

% Original image.
X = [1 2 3;4 5 6]

X =
1 2 3
4 5 6

% 2-D extension length.
l = 2;

% Zero-padding extension 2-D.
Xextzpd = wextend(2,'zpd',X,l)

Xextzpd =
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 2 3 0 0
0 0 4 5 6 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

% Symmetric extension 2-D.
Xextsym = wextend('2D','sym',X,l)

Xextsym =
5 4 4 5 6 6 5
2 1 1 2 3 3 2
2 1 1 2 3 3 2
5 4 4 5 6 6 5
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5 4 4 5 6 6 5
2 1 1 2 3 3 2

References Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-
Cambridge Press.
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Purpose Fractional Brownian motion synthesis

Syntax FBM = wfbm(H,L)
FBM = wfbm(H,L,'plot')
FBM = wfbm(H,L,NS,W)
FBM = wfbm(H,L,W,NS)
wfbm(H,L,'plot',NS)
wfbm(H,L,'plot',W)
wfbm(H,L,'plot',NS,W)
wfbm(H,L,'plot',W,NS)

Description FBM = wfbm(H,L) returns a fractional Brownian motion signal FBM
of the Hurst parameter H (0 < H < 1) and length L, following the
algorithm proposed by Abry and Sellan.

FBM = wfbm(H,L,'plot') generates and plots the FBM signal.

FBM = wfbm(H,L,NS,W) or FBM = wfbm(H,L,W,NS) returns the FBM
using NS reconstruction steps and the sufficiently regular orthogonal
wavelet W.

wfbm(H,L,'plot',NS) or wfbm(H,L,'plot',W) or
wfbm(H,L,'plot',NS,W) or wfbm(H,L,'plot',W,NS) generates and
plots the FBM signal.

wfbm(H,L) is equivalent to WFBM(H,L,6,'db10').

wfbm(H,L,NS) is equivalent to WFBM(H,L,NS,'db10').

wfbm(H,L,W) is equivalent to WFBM(H,L,W,6).

A fractional Brownian motion (fBm) is a continuous-time Gaussian
process depending on the Hurst parameter 0 < H < 1. It generalizes
the ordinary Brownian motion corresponding to H = 0.5 and whose
derivative is the white noise. The fBm is self-similar in distribution and
the variance of the increments is given by

Var(fBm(t)-fBm(s)) = v |t-s|^(2H)

where v is a positive constant.
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Examples According to the value of H, the fBm exhibits for H > 0.5, long-range
dependence and for H < 0.5, short or intermediate dependence. This
example shows each situation using the wfbm file, which generates a
sample path of this process.

% Generate fBm for H = 0.3 and H = 0.7

% Set the parameter H and the sample length
H = 0.3; lg = 1000;
% Generate and plot wavelet-based fBm for H = 0.3
fBm03 = wfbm(H,lg,'plot');

H = 0.7;
% Generate and plot wavelet-based fBm for H = 0.7
fBm07 = wfbm(H,lg,'plot');

% The last step is equivalent to
% Define wavelet and level of decomposition
% w = ' db10'; ns = 6;
% Generate
% fBm07 = wfbm(H,lg,'plot',w,ns);

fBm07 clearly exhibits a stronger low-frequency component and has,
locally, less irregular behavior.

Algorithms Starting from the expression of the fBm process as a fractional integral
of the white noise process, the idea of the algorithm is to build a
biorthogonal wavelet depending on a given orthogonal one and adapted
to the parameter H.

Then the generated sample path is obtained by the reconstruction
using the new wavelet starting from a wavelet decomposition at a given
level designed as follows: details coefficients are independent random
Gaussian realizations and approximation coefficients come from a
fractional ARIMA process.

This method was first proposed by Meyer and Sellan and
implementation issues were examined by Abry and Sellan.
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Nevertheless, the samples generated following this original scheme
exhibit too many high-frequency components. To circumvent this
undesirable behavior Bardet et al. propose downsampling the obtained
sample by a factor 10.

Two internal parameters delta = 10 (the downsampling factor) and a
threshold prec = 1E-4, to evaluate series by truncated sums, can be
modified by the user for extreme values of H.

A complete overview of long-range dependence process generators is
available in Bardet et al.

References Abry, P.; F. Sellan (1996), “The wavelet-based synthesis for the
fractional Brownian motion proposed by F. Sellan and Y. Meyer:
Remarks and fast implementation,” Appl. and Comp. Harmonic Anal.,
3(4), pp. 377–383.

Bardet, J.-M.; G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M.S.
Taqqu (2003), “Generators of long-range dependence processes: a
survey,” Theory and applications of long-range dependence, Birkhäuser,
pp. 579–623.

See Also wfbmesti
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Purpose Parameter estimation of fractional Brownian motion

Syntax HEST = wfbmesti(X)

Description HEST = wfbmesti(X) returns a row vector HEST which contains three
estimates of the fractal index H of the signal X supposed to come from
a fractional Brownian motion of parameter H.

The two first estimates are based on second order discrete derivative,
the second one is wavelet-based.

The third estimate is based on the linear regression in loglog plot, of
the variance of detail versus level.

A fractional Brownian motion (fBm) is a continuous-time Gaussian
process depending on the so-called Hurst parameter 0 < H < 1. It
generalizes the ordinary Brownian motion corresponding to H = 0.5
and whose derivative is the white noise. The fBm is self-similar in
distribution and the variance of the increments is given by

Var(fBm(t)-fBm(s)) = v |t-s|^(2H)

where v is a positive constant.

This special form of the variance of the increments suggests various
ways to estimate the parameter H. One can find in Bardet et al. a
survey of such methods. The wfbmesti file provides three different
estimates. The first one, due to Istas and Lang, is based on the discrete
second-order derivative. The second one is a wavelet-based adaptation
and has similar properties. The third one, proposed by Flandrin,
estimates H using the slope of the loglog plot of the detail variance
versus the level. A more recent extension can be found in Abry et al.

Examples This example shows a statistical comparison of the three estimators by
a short Monte-Carlo study.

% Initialize the randn generator

% Set parameter H to 0.6 and sample length
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H = 0.6; lg = 10000;
% Generate 100 wavelet-based fBm realizations for H = 0.6
% and compute the three estimates for each of them
n = 100; Hest = zeros(n,3);
for i = 1:n
fBm06 = wfbm(H,lg);
Hest(i,:) = wfbmesti(fBm06);

end

% Compare empirical distributions
subplot(311), hist(Hest(:,1));
title('Discrete second derivative estimator DSOD')
subplot(312), hist(Hest(:,2));
title('Wavelet version of DSOD')
subplot(313), hist(Hest(:,3));
title('Wavelet details regression estimator')
xlabel('True value of the parameter H = 0.6')

For these experimental conditions, the two first methods give similar
results with smaller dispersion than the third one. The third one is
clearly slightly biased and has greater dispersion.

These experimental results depend on H and on the various experimental
conditions. For a complete study, see Bardet et al.

References Abry, P.; P. Flandrin, M.S. Taqqu, D. Veitch (2003), “Self-similarity
and long-range dependence through the wavelet lens,” Theory and
applications of long-range dependence, Birkhäuser, pp. 527–556.

Bardet, J.-M.; G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M.S. Taqqu
(2003), “Semi-parametric estimation of the long-range dependence
parameter: a survey,” Theory and applications of long-range
dependence, Birkhäuser, pp. 557–577.

Flandrin, P. (1992), “Wavelet analysis and synthesis of fractional
Brownian motion,” IEEE Trans. on Inf. Th., 38, pp. 910–917.
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Istas, J.; G. Lang (1994), “Quadratic variations and estimation of the
local Hölder index of a Gaussian process,” Ann. Inst. Poincaré, 33, pp.
407–436.

See Also wfbm
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Purpose Wavelet filters

Syntax [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname')
[F1,F2] = wfilters('wname','type')

Description [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname') computes four filters
associated with the orthogonal or biorthogonal wavelet named in the
string 'wname'.

The four output filters are

• Lo_D, the decomposition low-pass filter

• Hi_D, the decomposition high-pass filter

• Lo_R, the reconstruction low-pass filter

• Hi_R, the reconstruction high-pass filter

Available orthogonal or biorthogonal wavelet names 'wname' are listed
in the table below.

Wavelet Families Wavelets

Daubechies 'db1' or 'haar', 'db2', ... ,'db10', ... ,
'db45'

Coiflets 'coif1', ... , 'coif5'

Symlets 'sym2', ... , 'sym8', ... ,'sym45'

Discrete Meyer 'dmey'

Biorthogonal 'bior1.1', 'bior1.3', 'bior1.5'
'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8'
'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7'
'bior3.9', 'bior4.4', 'bior5.5', 'bior6.8'

Reverse
Biorthogonal

'rbio1.1', 'rbio1.3', 'rbio1.5'
'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8'
'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7'
'rbio3.9', 'rbio4.4', 'rbio5.5', 'rbio6.8'
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[F1,F2] = wfilters('wname','type') returns the following filters:

Lo_D and Hi_D (Decomposition filters) If 'type' = 'd'

Lo_R and Hi_R (Reconstruction filters) If 'type' = 'r'

Lo_D and Lo_R (Low-pass filters) If 'type' = 'l'

Hi_D and Hi_R (High-pass filters) If 'type' = 'h'

Examples % Set wavelet name.
wname = 'db5';

% Compute the four filters associated with wavelet name given
% by the input string wname.
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wname);
subplot(221); stem(Lo_D);
title('Decomposition low-pass filter');
subplot(222); stem(Hi_D);
title('Decomposition high-pass filter');
subplot(223); stem(Lo_R);
title('Reconstruction low-pass filter');
subplot(224); stem(Hi_R);
title('Reconstruction high-pass filter');
xlabel('The four filters for db5')

% Editing some graphical properties,
% the following figure is generated.
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References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference
series in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition:
the wavelet representation,” IEEE Pattern Anal. and Machine Intell.,
vol. 11, no. 7, pp. 674–693.

See Also biorfilt | orthfilt | waveinfo
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Purpose Fusion of two images

Syntax XFUS = wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,DFUSMETH)
[XFUS,TXFUS,TX1,TX2] = wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,

DFUSMETH)
wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,DFUSMETH,FLAGPLOT)

Description The principle of image fusion using wavelets is to merge the wavelet
decompositions of the two original images using fusion methods applied
to approximations coefficients and details coefficients (see Zeeuw and
Misiti et al.).

XFUS = wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,DFUSMETH) returns
the fused image XFUS obtained by fusion of the two original images
X1 and X2. Each fusion method, defined by AFUSMETH and DFUSMETH,
merges in a specific way detailed below, the decompositions of X1 and
X2, at level LEVEL and using wavelet WNAME.

AFUSMETH and DFUSMETH define the fusion method for approximations
and details, respectively.

[XFUS,TXFUS,TX1,TX2] = wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,
DFUSMETH) returns, in addition to matrix XFUS, three
objects of the class WDECTREE associated with
XFUS, X1, and X2 respectively (see @WDECTREE).
wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,DFUSMETH,FLAGPLOT) also
plots the objects TXFUS, TX1, and TX2.

Fusmeth denotes AFUSMETH or DFUSMETH. Available fusion methods are

• Simple — Fusmeth can be 'max', 'min', 'mean', 'img1', 'img2' or
'rand', which merges the two approximations or details structures
obtained from X1 and X2 elementwise by taking the maximum, the
minimum, the mean, the first element, the second element, or a
randomly chosen element

• Parameter-dependent — Fusmeth is of the following form

Fusmeth = struct('name',nameMETH,'param',paramMETH)
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where nameMETH can be

'linear'

'UD_fusion' Up-down fusion

'DU_fusion' Down-up fusion

'RL_fusion' Right-left fusion

'UserDEF' User-defined fusion

For the description of these options and the paramMETH parameter, see
wfusmat.

Tips X1 and X2 must be of same size (see wextend to resize images) and
represent indexed images or truecolor images, which are m-by-n
matrices or m-by-n-by-3 arrays, respectively.

For more information on image formats, see the image and imfinfo
reference pages.

Examples The following three examples examine the process of image fusion

• The first example merges two different images leading to a new image

• The second example restores an image from two fuzzy versions of
an original image.

• The third example shows how to make an image fusion using a user
defined fusion method.

% Example 1: Fusion of two different images

% Load two original images: a mask and a bust
load mask; X1 = X;
load bust; X2 = X;

% Merge the two images from wavelet decompositions at level 5
% using db2 by taking two different fusion methods
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% fusion by taking the mean for both approximations and details
XFUSmean = wfusimg(X1,X2,'db2',5,'mean','mean');

% fusion by taking the maximum for approximations and the
% minimum for the details
XFUSmaxmin = wfusimg(X1,X2,'db2',5,'max','min');

% Plot original and synthesized images
colormap(map);
subplot(221), image(X1), axis square, title('Mask')
subplot(222), image(X2), axis square, title('Bust')
subplot(223), image(XFUSmean), axis square,
title('Synthesized image, mean-mean')
subplot(224), image(XFUSmaxmin), axis square,
title('Synthesized image, max-min')

% Example 2: Restoration by fusion of fuzzy images

% Load two fuzzy versions of an original image
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load cathe_1; X1 = X;
load cathe_2; X2 = X;

% Merge the two images from wavelet decompositions at level 5
% using sym4 by taking the maximum of absolute value of the
% coefficients for both approximations and details
XFUS = wfusimg(X1,X2,'sym4',5,'max','max');

% Plot original and synthesized images
colormap(map);
subplot(221), image(X1), axis square,
title('Catherine 1')
subplot(222), image(X2), axis square,
title('Catherine 2')
subplot(223), image(XFUS), axis square,
title('Synthesized image')

% The synthesized image is a restored version of good
% quality of the common underlying original image.
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% Example 3: Fusion using a user defined fusion method.
% This example calls a user fusion method defined by the
% file myfus_FUN.m which is listed below at the end of
% the example.

% load two images of the same size.
load mask; A = X;
load bust; B = X;

% Define the fusion method and call the fusion function
Fus_Method = struct('name','userDEF','param','myfus_FUN');
C = wfusmat(A,B,Fus_Method);

figure;
colormap(pink(220))
subplot(1,3,1), image(A), title('Original Image 1'), axis square
subplot(1,3,2), image(C), title('Fusioned Image'), axis square
subplot(1,3,3), image(B), title('Original Image 2'), axis square

%*******************************
% User defined fusion method. *
%*******************************
function C = myfus_FUN(A,B)

D = logical(triu(ones(size(A)))); t = 0.3;
C = A;
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C(D) = t*A(D)+(1-t)*B(D);
C(~D) = t*B(~D)+(1-t)*A(~D);

References Zeeuw, P.M. (1998), “Wavelet and image fusion,” CWI, Amsterdam,
March 1998, http:/www.cwi.nl/~pauldz/

Misiti, M.; Y. Misiti, G. Oppenheim, J.-M. Poggi (2003), “Les ondelettes
et leurs applications,” Hermes.

See Also wfusmat | wextend
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Purpose Fusion of two matrices or arrays

Syntax C = wfusmat(A,B,METHOD)

Description C = wfusmat(A,B,METHOD) returns the fused matrix C obtained from
the matrices A and B using the fusion method defined by METHOD.

The matrices A and B must be of the same size. The output matrix C is
of the same size as A and B.

Available fusion methods are

• Simple, where METHOD is

- 'max' : D = abs(A) ≥ abs(B) ; C = A(D) + B(~D)

- 'min' : D = abs(A) ≤ abs(B) ; C = A(D) + B(~D)

- 'mean' : C = (A+B) / 2 ; D = ones(size(A))

- 'rand' : C = A(D) + B(~D); D is a Boolean random matrix

- 'img1' : C = A

- 'img2' : C = B

• Parameter-dependent, where METHOD is of the following form:

METHOD = struct('name',nameMETH,'param',paramMETH)

where nameMETH can be

- 'linear' : C = A*paramMETH + B*(1-paramMETH),

where 0 £ paramMETH ≤ 1

- 'UD_fusion': Up-down fusion, with paramMETH ≥ 0

x = linspace(0,1,size(A,1));
P = x.^paramMETH;

Then each row of C is computed with

C(i,:) = A(i,:)*(1-P(i)) + B(i,:)*P(i);
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So C(1,:) = A(1,:) and C(end,:) = A(end,:)

- 'DU_fusion': Down-up fusion

- 'LR_fusion': Left-right fusion (columnwise fusion)

- 'RL_fusion': Right-left fusion (columnwise fusion)

- 'UserDEF’: User-defined fusion, paramMETH is a string
'userFUNCTION' containing a function name such that C =
userFUNCTION(A,B).

In addition, [C,D] = wfusmat(A,B,METHOD) returns the Boolean
matrix D when defined, or an empty matrix otherwise.
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Purpose Keep part of vector or matrix

Syntax Y = wkeep(X,L,OPT)
Y = wkeep(X,L,FIRST)
Y = wkeep(X,L)
Y = wkeep(X,L,'c')
Y = wkeep(X,S,[FIRSTR FIRSTC])

Description wkeep is a general utility.

For a vector, Y = wkeep(X,L,OPT) extracts the vector Y from the vector
X. The length of Y is L.

If OPT = 'c' ('l', 'r', respectively), Y is the central (left, right,
respectively) part of X.

Y = wkeep(X,L,FIRST) returns the vector X(FIRST:FIRST+L-1).

Y = wkeep(X,L) is equivalent to Y = wkeep(X,L,'c').

For a matrix, Y = wkeep(X,S) extracts the central part of the matrix
X. The size of Y is S.

Y = wkeep(X,S,[FIRSTR FIRSTC]) extracts the submatrix of matrix X,
of size S and starting from X(FIRSTR,FIRSTC).

Examples % For a vector.
x = 1:10;
y = wkeep(x,6,'c')
y =

3 4 5 6 7 8

y = wkeep(x,6)
y =

3 4 5 6 7 8

y = wkeep(x,7,'c')
y =

2 3 4 5 6 7 8
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y = wkeep(x,6,'l')
y =

1 2 3 4 5 6

y = wkeep(x,6,'r')
y =

5 6 7 8 9 10

% For a matrix.
x = magic(5)
x =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

y = wkeep(x,[3 2])
y =

5 7
6 13

12 19
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Purpose Maximum wavelet decomposition level

Syntax L = wmaxlev(S,'wname')

Description wmaxlev is a one- or two-dimensional wavelet or wavelet packets
oriented function.

wmaxlev can help you avoid unreasonable maximum level values. L
= wmaxlev(S,'wname') returns the maximum level decomposition of
signal or image of size S using the wavelet named in the string 'wname'
(see wfilters for more information).

wmaxlev gives the maximum allowed level decomposition, but in
general, a smaller value is taken.

Usual values are 5 for the one-dimensional case, and 3 for the
two-dimensional case.

Examples % For a 1-D signal.
s = 2^10;
w = 'db1';

% Compute maximum level decomposition.
% The rule is the last level for which at least
% one coefficient is correct.
l = wmaxlev(s,w)

l =
10

% Change wavelet.
w = 'db7';

% Compute maximum level decomposition.
l = wmaxlev(s,w)

l =
6
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% For a 2-D signal.
s = [2^9 2^7];
w = 'db1';

% Compute maximum level decomposition.
l = wmaxlev(s,w)

l =
7

% which is the same as:
l = wmaxlev(min(s),w)

l =
7

% Change wavelet.
w = 'db7';

% Compute maximum level decomposition.
l = wmaxlev(s,w)

l =
3

See Also wavedec | wavedec2 | wpdec | wpdec2
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Purpose Matching pursuit

Syntax YFIT = wmpalg(MPALG,Y,MPDICT)
[YFIT,R] = wmpalg(...)
[YFIT,R,COEFF] = wmpalg(...)
[YFIT,R,COEFF,IOPT] = wmpalg(...)
[YFIT,R,COEFF,IOPT,QUAL] = wmpalg(...)
[YFIT,R,COEFF,IOPT,QUAL,X] = wmpalg(...)
[YFIT,R,COEFF,IOPT,QUAL,X] = wmpalg(...,Name,Value)

Description YFIT = wmpalg(MPALG,Y,MPDICT) returns an adaptive greedy
approximation, YFIT, of the input signal, Y, in the dictionary, MPDICT.
The adaptive greedy approximation uses the matching pursuit
algorithm, MPALG. The dictionary, MPDICT, is typically an overcomplete
set of vectors constructed using wmpdictionary.

[YFIT,R] = wmpalg(...) returns the residual, R, which is the
difference vector between Y and YFIT at the termination of the
matching pursuit.

[YFIT,R,COEFF] = wmpalg(...) returns the expansion coefficients,
COEFF. The number of expansion coefficients depends on the number of
iterations in the matching pursuit.

[YFIT,R,COEFF,IOPT] = wmpalg(...) returns the column indices
of the retained atoms, IOPT. The length of IOPT equals the length of
COEFF and is determined by the number of iterations in the matching
pursuit.

[YFIT,R,COEFF,IOPT,QUAL] = wmpalg(...) returns the proportion of
retained signal energy, QUAL, for each iteration of the matching pursuit.
QUAL is the ratio of the ℓ2 squared norm of the expansion coefficient
vector, COEFF, to the ℓ2 squared norm of the input signal, Y.

[YFIT,R,COEFF,IOPT,QUAL,X] = wmpalg(...) returns the normalized
dictionary, X. X contains the unit vectors in the ℓ2 norm corresponding
to the columns of MPDICT.
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[YFIT,R,COEFF,IOPT,QUAL,X] = wmpalg(...,Name,Value) returns
an adaptive greedy approximation with additional options specified by
one or more Name,Value pair arguments.

Input
Arguments

MPALG

Matching pursuit algorithm as a string. Valid entries are:

• 'BMP' — Basic matching pursuit

• 'OMP' — Orthogonal matching pursuit

• 'WMP' — Weak orthogonal matching pursuit
See “Matching Pursuit Algorithms”.

Default: 'BMP'

MPDICT

Matching pursuit dictionary. MPDICT is a N-by-P matrix where N is
equal to the length of the input signal, Y. You can construct MPDICT
using wmpdictionary. In matching pursuit, MPDICT is commonly a
frame, or overcomplete set of vectors. You may use the Name-Value
pair 'lstcpt' to specify a dictionary instead of using MPDICT. If you
specify a value for 'lstcpt', wmpalg calls wmpdictionary.

Y

Signal for matching pursuit. Y is 1-D, real-valued row or column vector.
The row dimension of MPDICT must match the length of Y.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’itermax’
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Positive integer fixing the maximum number of iterations of the
matching pursuit algorithm. If you do not specify a 'maxerr' value,
the number of expansion coefficients, COEFF, the number of dictionary
vector indices, IOPT, and the length of the QUAL vector equal the value
of 'itermax'.

Default: 25

’lstcpt’

A cell array of cell arrays with valid subdictionaries. This name-value
pair is only valid if you do not input a dictionary in MPDICT. Each cell
array describes one subdictionary. Valid subdictionaries are:

• A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family
short name with the number of vanishing moments and an optional
decomposition level and extension mode. For example, {'sym4',5}
denotes the Daubechies least-asymmetric wavelet with 4 vanishing
moments at level 5 and the default extension mode 'per'. If you
do not specify the optional number level and extension mode, the
decomposition level defaults to 5 and the extension mode to 'per'.

• A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family
short name preceded by wp with the number of vanishing moments
and an optional decomposition level and extension mode. For
example, {'wpsym4',5} denotes the Daubechies least-asymmetric
wavelet packet with 4 vanishing moments at level 5. If you do
not specify the optional number level and extension mode, the
decomposition level defaults to 5 and the extension mode to 'per'.

• 'dct' Discrete cosine transform-II basis. The DCT-II orthonormal
basis is:
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• 'sin' Sine subdictionary. The sine subdictionary is:

 k
Nt kt k t( ) sin( ) , , ,    2 1 2 0 1
2

• 'cos' Cosine subdictionary. The cosine subdictionary is

 k
Nt kt k t( ) cos( ) , , ,    2 1 2 0 1
2

• 'poly' Polynomial subdictionary. The polynomial subdictionary is:

p t t n tn
n( ) , ,    1 1 2 20 0 1

• 'RnIdent' The shifted Kronecker delta subdictionary. The shifted
Kronecker delta subdictionary is:

 k n n k k N( ) ( ) , ,   0 1

If you use the 'lstcpt' name-value pair to generate your dictionary,
you can use the additional 'addbeg' and 'addend' name-value pairs to
append and addend dictionary atoms. See wmpdictionary for details.

’maxerr’

Cell array containing the name of the norm and the maximum relative
error in the norm expressed as a percentage. Valid norms are 'L1',
'L2', and 'Linf'. The relative error expressed as a percentage is

100
|| ||
|| ||

R
Y

where R is the residual at each iteration and Y is the input signal. For
example, {'L1',10} sets maximum acceptable ratio of the L1 norms of
the residual to the input signal to 0.10.

If you specify 'maxerr', the matching pursuit terminates when the first
of the following conditions is satisfied:

1-562



wmpalg

• The number of iterations reaches the minimum of the length of the
input signal, Y, or 500:
min(length(Y),500)

• The relative error falls below the percentage you specify with the
'maxerr' name-value pair.

’stepplot’

Number of iterations between successive plots. 'stepplot' requires a
positive integer. This name-value pair is only valid when 'typeplot' is
2 or 3 ('movie' or 'stepwise').

’typeplot’

Type of plot to produce during the progression of matching pursuit.
Valid entries for 'typeplot' are: 0 or 'none', 1 or 'one', 2 or 'movie',
3 or 'stepwise'. When 'typeplot' is 'movie' or 'stepwise', the plot
updates based on the value of 'stepplot'.

Default: 0 or 'none'

’wmpcfs’

Optimality factor for weak orthogonal matching pursuit. The optimality
factor is a real number in the interval (0,1]. This name-value pair is
only valid when MPALG is 'WMP'.

Default: 0.6

Output
Arguments

YFIT

Adaptive greedy approximation of the input signal, Y, in the dictionary

R

Residual after matching pursuit terminates

COEFF
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Expansion coefficients in the dictionary. The selected dictionary atoms
weighted by the expansion coefficients yield the approximated signal,
YFIT.

IOPT

Column indices of the selected dictionary atoms. Using the column
indices in IOPT with the expansion coefficients in COEFF, you can form
the approximated signal, YFIT.

QUAL

Proportion of retained signal energy for each iteration in the matching
pursuit. QUAL is a vector with each element equal to

|| ||

|| ||

k

Y
2
2

2
2

where αk is the vector of expansion coefficients after the k-th iteration.

X

The normalized matching pursuit dictionary. X is an N-by-P matrix
where N is the length of the input signal, Y. The columns of X have
unit norm.

Examples Adaptive Approximation using Orthogonal Matching Pursuit

Approximate the cuspamax signal with the dictionary using orthogonal
matching pursuit.

Use a dictionary consisting of sym4 wavelet packets and the DCT-II
basis.

load cuspamax;
mpdict = wmpdictionary(length(cuspamax),'LstCpt',{{'wpsym4',2},'dct'});
yfit = wmpalg('OMP',cuspamax,mpdict);
plot(cuspamax,'k'); hold on;
plot(yfit,'linewidth',2); legend('Original Signal','Matching Pursuit');
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Return Residual, Expansion Coefficients, Selected Atoms,
and Approximation Quality

Obtain the expansion coefficients in the dictionary, the column indices
of the selected dictionary atoms, and the proportion of retained signal
energy.

Create a dictionary consisting of sym4 wavelet packets and the DCT-II
basis. Approximate the cuspamax signal with the dictionary using
orthogonal matching pursuit.

load cuspamax;
mpdict = wmpdictionary(length(cuspamax),'LstCpt',{{'wpsym4',2},'dct'})
[yfit,r,coeff,iopt,qual] = wmpalg('OMP',cuspamax,mpdict);

Specify the Maximum Number of Iterations

This example shows how to set the maximum number of iterations of
the orthogonal matching pursuit to 50.

load cuspamax;
lstcpt = {{'wpsym4',1},{'wpsym4',2},'dct'};
mpdict = wmpdictionary(length(cuspamax),'LstCpt',lstcpt);
[yfit,r,coeff,iopt,qual] = wmpalg('OMP',cuspamax,mpdict,'itermax',50);

Stepwise Plot of Weak Orthogonal Matching Pursuit

This example shows how to allow for a suboptimal choice in the update
of the orthogonal matching pursuit.

Relax the requirement to be 0.8 times the optimal assignment. Plot the
results stepwise and update the plot every 5 iterations.

load cuspamax;
lstcpt = {{'wpsym4',1},{'wpsym4',2},'dct'};
mpdict = wmpdictionary(length(cuspamax),'LstCpt',lstcpt);
[yfit,r,coeff,iopt,qual] = wmpalg('WMP',cuspamax,mpdict,'wmpcfs',0.8,.

'typeplot','stepwise','stepplot',5);
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Matching Pursuit of Electricity Consumption Data

Obtain a matching pursuit of electricity consumption measured every
minute over a 24-hour period.

Load and plot data. The data shows electricity consumption sampled
every minute over a 24-hour period. Because the data is centered, the
actual usage values are not interpretable.

load elec35_nor;
y = signals(32,:);
plot(y); xlabel('Minutes'); ylabel('Usage');
set(gca,'xlim',[1 1440]);

Construct a dictionary for matching pursuit consisting of the
Daubechies’ extremal–phase wavelet with 2 vanishing moments at
level 2, the Daubechies’ least-asymmetric wavelet with 4 vanishing
moments at levels 1 and 4, the discrete cosine transform-II basis, and
the sine basis.

dictionary = {{'db4',2},'dct','sin',{'sym4',1},{'sym4',4}};
[mpdict,nbvect] = wmpdictionary(length(y),'lstcpt',dictionary);

Implement orthogonal matching pursuit to obtain a signal
approximation in the dictionary. Use 35 iterations. Plot the result.

[yfit,r,coef,iopt,qual] = wmpalg('OMP',y,mpdict,'itermax',35);
plot(y); hold on;
plot(yfit,'r'); xlabel('Minutes'); ylabel('Usage');
legend('Original Signal','OMP','Location','NorthEast');
set(gca,'xlim',[1 1440]);

Using the expansion coefficients in coef and the atom indices in iopt,
construct the signal approximation, yhat, directly from the dictionary.
Compare yhat with yfit returned by wmpalg.

[~,I] = sort(iopt);
X = mpdict(:,iopt(I));
yhat = X*coef(I);
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max(abs(yfit-yhat))

References [1] Cai, T.T. and Wang,L. “Orthogonal Matching Pursuit for Sparse
Signal Recovery with Noise”. IEEE® Transactions on Information
Theory, vol. 57, 7, 4680–4688, 2011.

[2] Donoho, D., Elad, M., and Temlyakov, V. “Stable Recovery of
Sparse Overcomplete Representations in the Presence of Noise”. IEEE
Transactions on Information Theory. Vol. 52, 1, 6–18, 2004.

[3] Mallat, S. and Zhang, Z. “Matching Pursuits with Time-Frequency
Dictionaries”. IEEE Transactions on Signal Processing, vol. 41, 12,
3397–3415, 1993

[4] bTropp, J.A. “Greed is good: Algorithmic results for sparse
approximation”. IEEE Transactions on Information Theory, 50, pp.
2231–2242, 2004.

See Also wavemenu | wmpdictionary

Related
Examples

• “Matching Pursuit — Command Line”
• “Matching Pursuit — Interactive Analysis”

Concepts • “Sparse Representation in Redundant Dictionaries”
• “Matching Pursuit Algorithms”
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Purpose Dictionary for matching pursuit

Syntax MPDICT = wmpdictionary(N)
[MPDICT,NBVECT] = wmpdictionary(N)
[MPDICT,NBVECT]= wmpdictionary(N,Name,Value)
[MPDICT,NBVECT,LST] = wmpdictionary(N,Name,Value)
[MPDICT,NBVECT,LST,LONGS] = wmpdictionary(N,Name,Value)

Description MPDICT = wmpdictionary(N) returns the N-by-P
dictionary, MPDICT, for the default subdictionaries
{{'sym4',5},{'wpsym4',5},'dct','sin'}. The column
dimension of MPDICT depends on N.

[MPDICT,NBVECT] = wmpdictionary(N) returns the row vector,
NBVECT, which contains the number of vectors in each subdictionary.
The order of the elements in NBVECT corresponds to the order of the
subdictionaries and any prepended or appended subdictionaries. The
sum of the elements in NBVECT is the column dimension of MPDICT.

[MPDICT,NBVECT]= wmpdictionary(N,Name,Value) returns the
dictionary, MPDICT, using additional options specified by one or more
Name,Value pair arguments.

[MPDICT,NBVECT,LST] = wmpdictionary(N,Name,Value) returns the
cell array, LST, with descriptions of the subdictionaries.

[MPDICT,NBVECT,LST,LONGS] = wmpdictionary(N,Name,Value)
returns the cell array, LONGS, containing the number of vectors in each
subdictionary. LONGS is only useful for wavelet subdictionaries. In
wavelet subdictionaries, the corresponding element in LONGS gives the
number of scaling functions at the coarsest level and wavelet functions
by level. See “Visualize Haar Wavelet Dictionary” on page 1-572 for
an example using LONGS.

Input
Arguments

N

A positive integer equal to the length of your input signal. The
dictionary atoms are constructed to have N elements. N equals the row
dimension of the dictionary, MPDICT.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’addbeg’

Prepended subdictionary. The prepended subdictionary is an N-by-M
matrix where N is the length of the input signal. wmpdictionary does
not check that the M column vectors of the prepended dictionary form
a basis. If you do not specify a value for lstcpt, the subdictionary
is prepended to the default dictionary. The column vectors in the
prepended subdictionary do not have to be unit-norm.

’addend’

Appended subdictionary. The appended subdictionary is a N-by-M
matrix where N is the length of the input signal. wmpdictionary does
not check that the M column vectors of the prepended dictionary form
a basis. If you do not specify a value for lstcpt, the subdictionary is
appended to the default dictionary. The column vectors in the appended
subdictionary do not have to be unit-norm.

’lstcpt’

A cell array of cell arrays with valid subdictionaries. Each cell array
describes one subdictionary. Valid subdictionaries are:

• A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family
short name with the number of vanishing moments and an optional
decomposition level and extension mode. For example, {'sym4',5}
denotes the Daubechies least-asymmetric wavelet with 4 vanishing
moments at level 5 and the default extension mode 'per'. If you do
not specify the optional level and extension mode, the decomposition
level defaults to 5 and the extension mode to 'per'.
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• A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family
short name preceded by wp with the number of vanishing moments
and an optional decomposition level and extension mode. For
example, {'wpsym4',5} denotes the Daubechies least-asymmetric
wavelet packet with 4 vanishing moments at level 5. If you do not
specify the optional level and extension mode, the decomposition
level defaults to 5 and the extension mode to 'per'.

• 'dct' Discrete cosine transform-II basis. The DCT-II orthonormal
basis is:
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• 'sin' Sine subdictionary. The sine subdictionary is

 k
Nt kt k t( ) sin( ) , , ,    2 1 2 0 1
2

where t is a linearly-spaced N-point vector.

• 'cos' Cosine subdictionary. The cosine subdictionary is

 k
Nt kt k t( ) cos( ) , , ,    2 1 2 0 1
2

where t is a linearly-spaced N-point vector.

• 'poly' Polynomial subdictionary. The polynomial subdictionary is:

p t t n tn
n( ) , ,    1 1 2 20 0 1

where t is a linearly-spaced N-point vector.

• 'RnIdent' The shifted Kronecker delta subdictionary. The shifted
Kronecker delta subdictionary is:

 k n n k k N( ) ( ) , ,   0 1
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Default: {{'sym4',5},{'wpsym4',5},'dct','sin'}

Output
Arguments

MPDICT

Matching pursuit dictionary. MPDICT is an N-by-P matrix with the
row dimension, N, equal to the length of the input signal. The column
dimension of the matrix depends on the size of the concatenated
subdictionaries.

NBVECT

Number of vectors in subdictionaries. NBVECT is a row vector containing
the number of elements in each subdictionary. The order of the
elements in NBVECT corresponds to the order of the subdictionaries and
any prepended or appended subdictionaries.

LST

Cell array describing the dictionary. LST is a 1-by-N cell array where N
is the number of subdictionaries. Each element of the cell array contains
a description of a subdictionary. If you specify a prepended or appended
subdictionary, the first element of LST is 'AddBeg' or 'AddEnd'. If you
specify a level for the wavelet or wavelet packet, the corresponding
element of LST is a 1-by-2 cell array containing the wavelet or wavelet
packet name in the first element and the level in the second element.

LONGS

Cell array containing the number of elements for each subdictionary.
LONGS is useful only for wavelet subdictionaries. If you specify a
wavelet subdictionary, the corresponding element of LONGS provides
the number of scaling functions at the coarsest level and the number
of wavelets at each level. See “Visualize Haar Wavelet Dictionary” on
page 1-572 for an example using LONGS.

Definitions Matching Pursuit

Matching pursuit refers to a number of greedy or weak-greedy
algorithms for computing an adaptive nonlinear expansion of a signal
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in a dictionary. In the majority of matching pursuit applications,
a dictionary is an overcomplete set of vectors. The elements of the
dictionary are referred to as atoms and are typically constructed to
have certain time/frequency or time/scale properties. Matching pursuit
takes the NP-hard problem of finding the best nonlinear expansion in
a dictionary and implements it in an energy-perserving formulation
that guarantees convergence. See “Matching Pursuit Algorithms” for
more details.

Examples Default Dictionary

Create the default dictionary to represent a signal of length 100.

mpdict = wmpdictionary(100);

Discrete Cosine Transform and Kronecker Delta Dictionary

Create a DCT and shifted Kronecker delta dictionary to represent a
signal of length 100.

mpdict = wmpdictionary(100,'lstcpt',{'dct','RnIdent'});

Haar Wavelet Packets and Discrete Cosine Transform
Dictionary

Create a Haar wavelet packet (level 2) and DCT dictionary. Return the
number of atoms in each subdictionary.

[mpdict,nbvect] = wmpdictionary(100,'lstcpt',{{'wphaar',2},'dct'});

Visualize Haar Wavelet Dictionary

Use the output argument, LONGS, to visualize a dictionary.

Create a Haar wavelet dictionary consisting of level-2 scaling functions
and level-1 and level-2 wavelet functions.

[mpdict,~,~,longs] = wmpdictionary(100,'lstcpt',{{'haar',2}});
for nn = 1:size(mpdict,2)

if (nn <= longs{1}(1))
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plot(mpdict(:,nn),'k','linewidth',2); grid on;
xlabel('Translation');

title('Haar Scaling Function - Level 2');
elseif (nn>longs{1}(1) & nn<= longs{1}(1)+longs{1}(2))

plot(mpdict(:,nn),'r','linewidth',2); grid on;
xlabel('Translation');

title('Haar Wavelet - Level 2');
else

title('Haar Wavelet - Level 1');
plot(mpdict(:,nn),'b','linewidth',2); grid on;
title('Haar Wavelet - Level 1');
xlabel('Translation');

end
pause(0.2);

end

References [1] Cai, T.T. and L. Wang “Orthogonal Matching Pursuit for Sparse
Signal Recovery with Noise”. IEEE Transactions on Information
Theory, vol. 57, 7, 4680–4688, 2011.

[2] Donoho, D., M. Elad, and V. Temlyakov “Stable Recovery of Sparse
Overcomplete Representations in the Presence of Noise”. IEEE
Transactions on Information Theory, 52,1, 6–18, 2004.

[3] Mallat, S. and Z. Zhang “Matching Pursuits with Time-Frequency
Dictionaries”. IEEE Transactions on Signal Processing, vol. 41, 12,
3397–3415, 1993

[4] Tropp, J.A. “Greed is good: Algorithmic results for sparse
approximation”. IEEE Transactions on Information Theory, 50, pp.
2231–2242, 2004.

See Also wavemenu | wmpalg

Related
Examples

• “Matching Pursuit — Command Line”
• “Matching Pursuit — Interactive Analysis”
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Concepts • “Sparse Representation in Redundant Dictionaries”
• “Matching Pursuit Algorithms”
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Purpose Multiscale Principal Component Analysis

Syntax [X_SIM,QUAL,NPC,DEC_SIM,PCA_Params] = wmspca(X,LEVEL,WNAME,
NPC)

[...] = wmspca(X,LEVEL,WNAME,'mode',EXTMODE,NPC)
[...] = wmspca(DEC,NPC)
[...] = wmspca(X,LEVEL,WNAME,'mode',EXTMODE,NPC)

Description [X_SIM,QUAL,NPC,DEC_SIM,PCA_Params] = wmspca(X,LEVEL,WNAME,
NPC) or [...] = wmspca(X,LEVEL,WNAME,'mode',EXTMODE,NPC)
returns a simplified version X_SIM of the input matrix X obtained from
the wavelet-based multiscale principal component analysis (PCA).

The input matrix X contains P signals of length N stored columnwise
(N > P).

Wavelet Decomposition Parameters

The wavelet decomposition is performed using the decomposition level
LEVEL and the wavelet WNAME.

EXTMODE is the extended mode for the DWT (See dwtmode).

If a decomposition DEC obtained using mdwtdec is available, you can use

[...] = wmspca(DEC,NPC) instead of

[...] = wmspca(X,LEVEL,WNAME,'mode',EXTMODE,NPC).

Principal Components Parameter: NPC

If NPC is a vector, then it must be of length LEVEL+2. It contains the
number of retained principal components for each PCA performed:

• NPC(d) is the number of retained noncentered principal components
for details at level d, for 1 <= d <= LEVEL.

• NPC(LEVEL+1) is the number of retained non-centered principal
components for approximations at level LEVEL.

• NPC(LEVEL+2) is the number of retained principal components for
final PCA after wavelet reconstruction.
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NPC must be such that 0 <= NPC(d) <= P for 1 <= d <= LEVEL+2.

If NPC = 'kais' (respectively, 'heur'), then the number of retained
principal components is selected automatically using Kaiser’s rule (or
the heuristic rule).

• Kaiser’s rule keeps the components associated with eigenvalues
greater the mean of all eigenvalues.

• The heuristic rule keeps the components associated with eigenvalues
greater than 0.05 times the sum of all eigenvalues.

If NPC = 'nodet', then the details are “killed” and all the
approximations are retained.

Output Parameters

X_SIM is a simplified version of the matrix X.

QUAL is a vector of length P containing the quality of column
reconstructions given by the relative mean square errors in percent.

NPC is the vector of selected numbers of retained principal components.

DEC_SIM is the wavelet decomposition of X_SIM.

PCA_Params is a structure array of length LEVEL+2 such that:

• PCA_Params(d).pc is a P-by-P matrix of principal components.

The columns are stored in descending order of the variances.

• PCA_Params(d).variances is the principal component variances
vector.

• PCA_Params(d).npc = NPC

Examples Wavelet Principal Component Analysis of Noisy Multivariate
Signal

Use wavelet multiscale principal component analysis to denoise a
multivariate signal.
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Load the dataset consisting of 4 signals of length 1024. Plot the original
signals and the signals with additive noise.

load ex4mwden;
kp = 0;
for i = 1:4

subplot(4,2,kp+1), plot(x_orig(:,i)); axis tight;
title(['Original signal ',num2str(i)])
subplot(4,2,kp+2), plot(x(:,i)); axis tight;
title(['Noisy signal ',num2str(i)])
kp = kp + 2;

end

Perform the first multiscale wavelet PCA using the Daubechies’
least-asymmetric wavelet with 4 vanishing moments, sym4. Obtain the
multiresolution decomposition down to level 5. Use the heuristic rule to
decide how many principal components to retain.

level = 5;
wname = 'sym4';
npc = 'heur';
[x_sim, qual, npc] = wmspca(x,level,wname,npc);

Plot the result and examine the quality of the approximation.

qual
kp = 0;
for i = 1:4

subplot(4,2,kp+1), plot(x(:,i)); axis tight;
title(['Noisy signal ',num2str(i)])
subplot(4,2,kp+2), plot(x_sim(:,i)); axis tight;
title(['First PCA ',num2str(i)])
kp = kp + 2;

end

The quality results are all close to 100%. The npc vector gives the
number of principal components retained at each level.
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Suppress the noise by removing the principal components at levels 1–3.
Perform the multiscale PCA again.

npc(1:3) = zeros(1,3);
[x_sim, qual, npc] = wmspca(x,level,wname,npc);

Plot the result.

kp = 0;
for i = 1:4

subplot(4,2,kp+1), plot(x(:,i)); axis tight;
title(['Noisy signal ',num2str(i)])
subplot(4,2,kp+2), plot(x_sim(:,i)); axis tight;
title(['Second PCA ',num2str(i)])
kp = kp + 2;

end

Algorithms The multiscale principal components generalizes the usual PCA of a
multivariate signal seen as a matrix by performing simultaneously a
PCA on the matrices of details of different levels. In addition, a PCA
is performed also on the coarser approximation coefficients matrix in
the wavelet domain as well as on the final reconstructed matrix. By
selecting conveniently the numbers of retained principal components,
interesting simplified signals can be reconstructed.

References Aminghafari, M.; Cheze, N.; Poggi, J-M. (2006), “Multivariate de-noising
using wavelets and principal component analysis,” Computational
Statistics & Data Analysis, 50, pp. 2381–2398.

Bakshi, B. (1998), “Multiscale PCA with application to MSPC
monitoring,” AIChE J., 44, pp. 1596–1610.

See Also wmulden
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Purpose Wavelet multivariate de-noising

Syntax [X_DEN,NPC,NESTCOV,DEC_DEN,PCA_Params,DEN_Params] = ...
wmulden(X,LEVEL,WNAME,NPC_APP,NPC_FIN,TPTR,SORH)

[...] = wmulden(X,LEVEL,WNAME,'mode',EXTMODE,NPC_APP,...)
[...] = wmulden(DEC,NPC_APP)
[...] = wmulden(X,LEVEL,WNAME,'mode',EXTMODE,NPC_APP)
[DEC,PCA_Params] = wmulden('estimate',DEC,NPC_APP,NPC_FIN)
[X_DEN,NPC,DEC_DEN,PCA_Params] = wmulden('execute',DEC,

PC_Params)

Description [X_DEN,NPC,NESTCOV,DEC_DEN,PCA_Params,DEN_Params] = ...
wmulden(X,LEVEL,WNAME,NPC_APP,NPC_FIN,TPTR,SORH) or
[...] = wmulden(X,LEVEL,WNAME,'mode',EXTMODE,NPC_APP,...)
returns a de-noised version X_DEN of the input matrix X. The strategy
combines univariate wavelet de-noising in the basis where the
estimated noise covariance matrix is diagonal with noncentered
Principal Component Analysis (PCA) on approximations in the wavelet
domain or with final PCA.

The input matrix X contains P signals of length N stored columnwise
where N > P.

Wavelet Decomposition Parameters

The wavelet decomposition is performed using the decomposition level
LEVEL and the wavelet WNAME.

EXTMODE is the extended mode for the DWT (See dwtmode).

If a decomposition DEC obtained using mdwtdec is available, you can use

[...] = wmulden(DEC,NPC_APP) instead of

[...] = wmulden(X,LEVEL,WNAME,'mode',EXTMODE,NPC_APP).

Principal Components Parameters: NPC_APP and NPC_FIN

The input selection methods NPC_APP and NPC_FIN define the way
to select principal components for approximations at level LEVEL in
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the wavelet domain and for final PCA after wavelet reconstruction,
respectively.

If NPC_APP (or NPC_FIN) is an integer, it contains the number of retained
principal components for approximations at level LEVEL (or for final
PCA after wavelet reconstruction).

NPC_XXX must be such that 0 <= NPC_XXX <= P

NPC_APP or NPC_FIN = 'kais' (or 'heur') selects the number of
retained principal components using Kaiser’s rule (or the heuristic rule)
automatically.

• Kaiser’s rule keeps the components associated with eigenvalues
greater than the mean of all eigenvalues.

• Heuristic rule keeps the components associated with eigenvalues
greater than 0.05 times the sum of all eigenvalues.

NPC_APP or NPC_FIN = 'none' is equivalent to NPC_APP or NPC_FIN = P.

De-noising Parameters: TPTR and SORH

The default values for the de-noising parameters TPTR and SORH are:

TPTR = 'sqtwolog' and SORH = 's'

• Valid values for TPTR are

'rigsure', 'heursure', 'sqtwolog', 'minimaxi',
'penalhi', 'penalme', 'penallo'

• Valid values for SORH are:

's' (soft) or 'h' (hard)

For additional information, see wden and wbmpen.

Output Parameters

X_DEN is a de-noised version of the input matrix X.

NPC is the vector of selected numbers of retained principal components.
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NESTCOV is the estimated noise covariance matrix obtained using the
minimum covariance determinant (MCD) estimator.

DEC_DEN is the wavelet decomposition of X_DEN.

PCA_Params is a structure such that:

PCA_Params.NEST = {pc_NEST,var_NEST,NESTCOV}
PCA_Params.APP = {pc_APP,var_APP,npc_APP}
PCA_Params.FIN = {pc_FIN,var_FIN,npc_FIN}

where:

• pc_XXX is a P-by-P matrix of principal components.

The columns are stored in descending order of the variances.

• var_XXX is the principal component variances vector.

• NESTCOV is the covariance matrix estimate for detail at level 1.

DEN_Params is a structure such that:

• DEN_Params.thrVAL is a vector of length LEVEL which contains the
threshold values for each level.

• DEN_Params.thrMETH is a string containing the name of the
de-noising method (TPTR).

• DEN_Params.thrTYPE is a character variable containing the type of
the thresholding (SORH).

Special Cases

[DEC,PCA_Params] = wmulden('estimate',DEC,NPC_APP,NPC_FIN)
returns the wavelet decomposition DEC and the Principal Components
Estimates PCA_Params.

[X_DEN,NPC,DEC_DEN,PCA_Params] = wmulden('execute',DEC,
PC_Params) uses the principal components estimates PCA_Params
previously computed.

The input value DEC can be replaced by X, LEVEL, and WNAME.
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Examples % Load a multivariate signal x together with
% the original signals (x_orig) and true noise
% covariance matrix (covar).

load ex4mwden

% Set the de-noising method parameters.
level = 5;
wname = 'sym4';
tptr = 'sqtwolog';
sorh = 's';

% Set the PCA parameters to select the number of
% retained principal components automatically by
% Kaiser's rule.

npc_app = 'kais';
npc_fin = 'kais';

% Perform multivariate de-noising.
[x_den, npc, nestco] = wmulden(x, level, wname, npc_app, ...

npc_fin, tptr, sorh);

% Display the original and de-noised signals.
kp = 0;
for i = 1:4

subplot(4,3,kp+1), plot(x_orig(:,i));
title(['Original signal ',num2str(i)])
subplot(4,3,kp+2), plot(x(:,i));
title(['Observed signal ',num2str(i)])
subplot(4,3,kp+3), plot(x_den(:,i));
title(['De-noised signal ',num2str(i)])
kp = kp + 3;

end
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% The results are good: the first function, which is
% irregular, is correctly recovered while the second
% function, more regular, is well de-noised.

% The second output argument gives the numbers
% of retained principal components for PCA for
% approximations and for final PCA.

npc

npc =

2 2

% The third output argument contains the estimated

1-583



wmulden

% noise covariance matrix using the MCD based
% on the matrix of finest details.

nestco

nestco =

1.0784 0.8333 0.6878 0.8141
0.8333 1.0025 0.5275 0.6814
0.6878 0.5275 1.0501 0.7734
0.8141 0.6814 0.7734 1.0967

% The estimation is satisfactory since the values are close
% to the true values given by covar.

covar

covar =

1.0000 0.8000 0.6000 0.7000
0.8000 1.0000 0.5000 0.6000
0.6000 0.5000 1.0000 0.7000
0.7000 0.6000 0.7000 1.0000

Algorithms The multivariate de-noising procedure is a generalization of the
one-dimensional strategy. It combines univariate wavelet de-noising in
the basis where the estimated noise covariance matrix is diagonal and
non-centered Principal Component Analysis (PCA) on approximations
in the wavelet domain or with final PCA.

The robust estimate of the noise covariance matrix given by the
minimum covariance determinant estimator based on the matrix of
finest details.

References Aminghafari, M.; Cheze, N.; Poggi, J-M. (2006), “Multivariate de-noising
using wavelets and principal component analysis,” Computational
Statistics & Data Analysis, 50, pp. 2381–2398.
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Rousseeuw, P.; Van Driessen, K. (1999), “A fast algorithm for the
minimum covariance determinant estimator,” Technometrics, 41, pp.
212–223.

See Also wmspca
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Purpose Noisy wavelet test data

Syntax X = wnoise(FUN,N)
[X,XN] = wnoise(FUN,N,SQRT_SNR)
[X,XN] = wnoise(FUN,N,SQRT_SNR,INIT)

Description X = wnoise(FUN,N) returns values of the test signal given by FUN, on a
2N grid of [0,1].

[X,XN] = wnoise(FUN,N,SQRT_SNR) returns a test vector X as above,
rescaled such that std(X) = SQRT_SNR. The returned vector XN contains
the same test vector corrupted by additive Gaussian white noise N(0,1).
Then, XN has a signal-to-noise ratio of SNR = (SQRT_SNR)2.

[X,XN] = wnoise(FUN,N,SQRT_SNR,INIT) returns previous vectors X
and XN, but the generator seed is set to INIT value.

The six functions below are due to Donoho and Johnstone (See
“References”).

FUN = 1 or 'blocks'

FUN = 2 or 'bumps'

FUN = 3 or 'heavy sine'

FUN = 4 or 'doppler'

FUN = 5 or 'quadchirp'

FUN = 6 or 'mishmash'

Examples % Generate 2^10 samples of 'Heavy sine' (item 3).
x = wnoise(3,10);

% Generate 2^10 samples of 'Doppler' (item 4) and of
% noisy 'Doppler' with a square root of signal-to-noise
% ratio equal to 7.
[x,noisyx] = wnoise(4,10,7);
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% To introduce your own rand seed, a fourth
% argument is allowed:
init = 2055415866;
[x,noisyx] = wnoise(4,10,7,init);

% Plot all the test functions.
ind = linspace(0,1,2^10);
for i = 1:6

x = wnoise(i,10);
subplot(6,1,i), plot(ind,x)

end

% Editing some graphical properties,
% the following figure is generated.

References Donoho, D.L.; I.M. Johnstone (1994), “Ideal spatial adaptation by
wavelet shrinkage,” Biometrika, vol. 81, pp. 425–455.
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Donoho, D.L.; I.M. Johnstone (1995), “Adapting to unknown smoothness
via wavelet shrinkage via wavelet shrinkage,” JASA, vol. 90, 432, pp.
1200–1224.

See Also wden
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Purpose Estimate noise of 1-D wavelet coefficients

Syntax STDC = wnoisest(C,L,S)
STDC = wnoisest(C)
STDC = wnoisest(C)

Description STDC = wnoisest(C,L,S) returns estimates of the detail coefficients’
standard deviation for levels contained in the input vector S. [C,L]
is the input wavelet decomposition structure (see wavedec for more
information).

If C is a one dimensional cell array, STDC = wnoisest(C) returns a
vector such that STDC(k) is an estimate of the standard deviation of
C{k}.

If C is a numeric array, STDC = wnoisest(C) returns a vector such that
STDC(k) is an estimate of the standard deviation of C(k,:).

The estimator used is Median Absolute Deviation / 0.6745, well suited
for zero mean Gaussian white noise in the de-noising one-dimensional
model (see thselect for more information).

Examples Estimate Noise Standard Deviation in The Presence of
Outliers

Estimate of the noise standard deviation in an N(0,1) white Gaussian
noise vector with outliers.

Create an N(0,1) noise vector with 10 randomly-placed outliers.

rng default;
x = randn(1000,1);
P = randperm(length(x));
indices = P(1:10);
x(indices(1:5)) = 10;
x(indices(6:end)) = -10;

Obtain the discrete wavelet transform down to level 2 using the
Daubechies’ extremal phase wavelet with 3 vanishing moments.
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[c,l] = wavedec(x,2,'db3');
stdc = wnoisest(c,l,1:2)

In spite of the outliers, wnoisest provides a robust estimate of the
standard deviation.

References Donoho, D.L.; I.M. Johnstone (1994), “Ideal spatial adaptation by
wavelet shrinkage,” Biometrika, vol 81, pp. 425–455.

Donoho, D.L.; I.M. Johnstone (1995), “Adapting to unknown smoothness
via wavelet shrinkage via wavelet shrinkage,” JASA, vol 90, 432, pp.
1200–1224.

See Also thselect | wavedec | wden
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Purpose Extract wavelet tree from wavelet packet tree

Syntax T = wp2wtree(T)

Description wp2wtree is a one- or two-dimensional wavelet packet analysis function.

T = wp2wtree(T) computes the modified wavelet packet tree T
corresponding to the wavelet decomposition tree.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal.
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets
% using shannon entropy.
wpt = wpdec(x,3,'db1');

% Plot wavelet packet tree wpt.
plot(wpt)

% Compute wavelet tree.
wt = wp2wtree(wpt);

1-591



wp2wtree

% Plot wavelet tree wt.
plot(wt)

See Also wpdec | wpdec2
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Purpose Penalized threshold for wavelet packet de-noising

Syntax THR = wpbmpen(T,SIGMA,ALPHA)
wpbmpen(T,SIGMA,ALPHA,ARG)

Description THR = wpbmpen(T,SIGMA,ALPHA) returns a global threshold THR for
de-noising. THR is obtained by a wavelet packet coefficients selection
rule using a penalization method provided by Birge-Massart.

T is a wavelet packet tree corresponding to the wavelet packet
decomposition of the signal or image to be de-noised.

SIGMA is the standard deviation of the zero mean Gaussian white noise
in the de-noising model (see wnoisest for more information).

ALPHA is a tuning parameter for the penalty term. It must be a
real number greater than 1. The sparsity of the wavelet packet
representation of the de-noised signal or image grows with ALPHA.
Typically ALPHA = 2.

THR minimizes the penalized criterion given by

let t* be the minimizer of

crit(t) = -sum(c(k)^2,k t) + 2*SIGMA^2*t*(ALPHA + log(n/t))

where c(k) are the wavelet packet coefficients sorted in decreasing
order of their absolute value and n is the number of coefficients, then
THR = |c(t*)|.

wpbmpen(T,SIGMA,ALPHA,ARG) computes the global threshold and, in
addition, plots three curves:

• 2*SIGMA^2*t*(ALPHA + log(n/t))

• sum(c(k)^2,k£t)

• crit(t)

Examples % Example 1: Signal de-noising.
% Load noisy chirp signal.
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load noischir; x = noischir;

% Perform a wavelet packet decomposition of the signal
% at level 5 using sym6.
wname = 'sym6'; lev = 5;
tree = wpdec(x,lev,wname);

% Estimate the noise standard deviation from the
% detail coefficients at level 1,
% corresponding to the node index 2.
det1 = wpcoef(tree,2);
sigma = median(abs(det1))/0.6745;

% Use wpbmpen for selecting global threshold
% for signal de-noising, using the recommended parameter.
alpha = 2;
thr = wpbmpen(tree,sigma,alpha)

thr =

4.5740

% Use wpdencmp for de-noising the signal using the above
% threshold with soft thresholding and keeping the
% approximation.
keepapp = 1;
xd = wpdencmp(tree,'s','nobest',thr,keepapp);

% Plot original and de-noised signals.
figure(1)
subplot(211), plot(x),
title('Original signal')
subplot(212), plot(xd)
title('De-noised signal')
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% Example 2: Image de-noising.
% Load original image.
load noiswom;
nbc = size(map,1);

% Perform a wavelet packet decomposition of the image
% at level 3 using coif2.
wname = 'coif2'; lev = 3;
tree = wpdec2(X,lev,wname);

% Estimate the noise standard deviation from the
% detail coefficients at level 1.
det1 = [wpcoef(tree,2) wpcoef(tree,3) wpcoef(tree,4)];
sigma = median(abs(det1(:)))/0.6745;

% Use wpbmpen for selecting global threshold
% for image de-noising.
alpha = 1.1;
thr = wpbmpen(tree,sigma,alpha)
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thr =

38.5125

% Use wpdencmp for de-noising the image using the above
% thresholds with soft thresholding and keeping the
% approximation.
keepapp = 1;
xd = wpdencmp(tree,'s','nobest',thr,keepapp);

% Plot original and de-noised images.
figure(2)
colormap(pink(nbc));
subplot(221), image(wcodemat(X,nbc))
title('Original image')
subplot(222), image(wcodemat(xd,nbc))
title('De-noised image')

See Also wbmpen | wden | wdencmp | wpdencmp
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Purpose Wavelet packet coefficients

Syntax X = wpcoef(T,N)
X = wpcoef(T)

Description wpcoef is a one- or two-dimensional wavelet packet analysis function.

X = wpcoef(T,N) returns the coefficients associated with the node N of
the wavelet packet tree T. If N doesn’t exist, X = [ ];

X = wpcoef(T) is equivalent to X = wpcoef(T,0).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal.
load noisdopp; x = noisdopp;

figure(1); subplot(211);
plot(x); title('Original signal');

% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.
wpt = wpdec(x,3,'db1');

% Plot wavelet packet tree wpt.
plot(wpt)
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% Read packet (2,1) coefficients.
cfs = wpcoef(wpt,[2 1]);

figure(1); subplot(212);
plot(cfs); title('Packet (2,1) coefficients');
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See Also wpcoef | wpdec | wpdec2 | wprcoef

How To • “Reconstructing a Signal Approximation from a Node”

1-599



wpcutree

Purpose Cut wavelet packet tree

Syntax T = wpcutree(T,L)
T
[T,RN] = wpcutree(T,L)

Description wpcutree is a one- or two-dimensional wavelet packet analysis function.

T = wpcutree(T,L) cuts the tree T at level L.

[T,RN] = wpcutree(T,L) returns the same arguments as above and, in
addition, the vector RN contains the indices of the reconstructed nodes.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal.
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.
wpt = wpdec(x,3,'db1');

% Plot wavelet packet tree wpt.
plot(wpt)
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% Cut wavelet packet tree at level 2.
nwpt = wpcutree(wpt,2);

% Plot new wavelet packet tree nwpt.
plot(nwpt)

See Also wpdec | wpdec2
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Purpose Wavelet packet decomposition 1-D

Syntax T = wpdec(X,N,'wname',E,P)
T = wpdec(X,N,'wname')
T = wpdec(X,N,'wname','shannon')
T

Description wpdec is a one-dimensional wavelet packet analysis function.

T = wpdec(X,N,'wname',E,P) returns a wavelet packet tree T
corresponding to the wavelet packet decomposition of the vector X at
level N, with a particular wavelet ('wname', see wfilters for more
information).

T = wpdec(X,N,'wname') is equivalent to T =
wpdec(X,N,'wname','shannon').

E is a string containing the type of entropy and P is an optional
parameter depending on the value of T (see wentropy for more
information).

Entropy Type
Name (E) Parameter (P) Comments

'shannon' P is not used.

'log energy' P is not used.

'threshold' 0 ≤ P P is the threshold.

'sure' 0 ≤ P P is the threshold.

'norm' 1 ≤ P P is the power.
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Entropy Type
Name (E) Parameter (P) Comments

'user' string P is a string containing the
file name of your own entropy
function, with a single input
X.

FunName No
constraints
on P

FunName is any other string
except those used for the
previous Entropy Type Names
listed above.
FunName contains the file
name of your own entropy
function, with X as input and
P as additional parameter to
your entropy function.

Note The 'user' option is historical and still kept for compatibility,
but it is obsoleted by the last option described in the table above. The
FunName option do the same as the 'user' option and in addition gives
the possibility to pass a parameter to your own entropy function.

The wavelet packet method is a generalization of wavelet decomposition
that offers a richer signal analysis. Wavelet packet atoms are
waveforms indexed by three naturally interpreted parameters: position
and scale as in wavelet decomposition, and frequency.

For a given orthogonal wavelet function, a library of wavelet packets
bases is generated. Each of these bases offers a particular way of coding
signals, preserving global energy and reconstructing exact features.
The wavelet packets can then be used for numerous expansions of
a given signal.
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Simple and efficient algorithms exist for both wavelet packets
decomposition and optimal decomposition selection. Adaptive filtering
algorithms with direct applications in optimal signal coding and data
compression can then be produced.

In the orthogonal wavelet decomposition procedure, the generic step
splits the approximation coefficients into two parts. After splitting we
obtain a vector of approximation coefficients and a vector of detail
coefficients, both at a coarser scale. The information lost between two
successive approximations is captured in the detail coefficients. The
next step consists in splitting the new approximation coefficient vector;
successive details are never re-analyzed.

In the corresponding wavelet packets situation, each detail coefficient
vector is also decomposed into two parts using the same approach as
in approximation vector splitting. This offers the richest analysis:
the complete binary tree is produced in the one-dimensional case or a
quaternary tree in the two-dimensional case.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal.
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.
wpt = wpdec(x,3,'db1','shannon');

% The result is the wavelet packet tree wpt.

% Plot wavelet packet tree (binary tree, or tree of order 2).
plot(wpt)
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Algorithms The algorithm used for the wavelet packets decomposition follows the
same line as the wavelet decomposition process (see dwt and wavedec
for more information).

References Coifman, R.R.; M.V. Wickerhauser, (1992), “Entropy-based Algorithms
for best basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp.
713–718.

Meyer, Y. (1993), Les ondelettes. Algorithmes et applications, Colin
Ed., Paris, 2nd edition. (English translation: Wavelets: Algorithms
and Applications, SIAM).

Wickerhauser, M.V. (1991), “INRIA lectures on wavelet packet
algorithms,” Proceedings ondelettes et paquets d’ondes, 17–21 June,
Rocquencourt, France, pp. 31–99.

Wickerhauser, M.V. (1994), Adapted wavelet analysis from theory to
software algorithms, A.K. Peters.

See Also wavedec | waveinfo | wenergy | wpdec | wprec
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Purpose Wavelet packet decomposition 2-D

Syntax T = wpdec2(X,N,'wname',E,P)
T = wpdec2(X,N,'wname')
T = wpdec2(X,N,wnam,'shannon')

Description wpdec2 is a two-dimensional wavelet packet analysis function.

T = wpdec2(X,N,'wname',E,P) returns a wavelet packet tree T
corresponding to the wavelet packet decomposition of the matrix X,
at level N, with a particular wavelet ('wname', see wfilters for more
information).

T = wpdec2(X,N,'wname') is equivalent to T =
wpdec2(X,N,wnam,'shannon').

E is a string containing the type of entropy and P is an optional
parameter depending on the value of T (see wentropy for more
information).

Entropy Type
Name (E) Parameter (P) Comments

'shannon' P is not used.

'log energy' P is not used.

'threshold' 0 ≤ P P is the threshold.

'sure' 0 ≤ P P is the threshold.

'norm' 1 ≤ P P is the power.
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Entropy Type
Name (E) Parameter (P) Comments

'user' string P is a string containing the
file name of your own entropy
function, with a single input
X.

STR No
constraints
on P

STR is any other string except
those used for the previous
Entropy Type Names listed
above.STR contains the file
name of your own entropy
function, with X as input and
P as additional parameter to
your entropy function.

Note The 'user' option is historical and still kept for compatibility,
but it is obsoleted by the last option described in the preceding table.
The FunName option does the same as the 'user' option and in addition,
allows you to pass a parameter to your own entropy function.

See wpdec for a more complete description of the wavelet packet
decomposition.

Tips When X represents an indexed image, X is an m-by-n matrix. When X
represents a truecolor image, it is an m-by-n-by-3 array, where each
m-by-n matrix represents a red, green, or blue color plane concatenated
along the third dimension.

For more information on image formats, see the image and imfinfo
reference pages.

Examples % The current extension mode is zero-padding (see dwtmode).
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% Load image.
load tire
% X contains the loaded image.

% For an image the decomposition is performed using:
t = wpdec2(X,2,'db1');
% The default entropy is shannon.

% Plot wavelet packet tree
% (quarternary tree, or tree of order 4).
plot(t)

Algorithms The algorithm used for the wavelet packets decomposition follows the
same line as the wavelet decomposition process (see dwt2 and wavedec2
for more information).

References Coifman, R.R.; M.V. Wickerhauser (1992), “Entropy-based algorithms
for best basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp.
713–718.

Meyer, Y. (1993), Les ondelettes. Algorithmes et applications, Colin
Ed., Paris, 2nd edition. (English translation: Wavelets: Algorithms
and Applications, SIAM).
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Wickerhauser, M.V. (1991), “INRIA lectures on wavelet packet
algorithms,” Proceedings ondelettes et paquets d’ondes, 17–21 June,
Rocquencourt, France, pp. 31–99.

Wickerhauser, M.V. (1994), Adapted wavelet analysis from theory to
software Algorithms, A.K. Peters.

See Also wavedec2 | waveinfo | wenergy | wpdec | wprec2
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Purpose De-noising or compression using wavelet packets

Syntax [XD,TREED,PERF0,PERFL2] =
wpdencmp(X,SORH,N,'wname',CRIT,PAR,

KEEPAPP)
[XD,TREED,PERF0,PERFL2] = wpdencmp(TREE,SORH,CRIT,PAR,

KEEPAPP)

Description wpdencmp is a one- or two-dimensional de-noising and compression
oriented function.

wpdencmp performs a de-noising or compression process of a signal or
an image, using wavelet packet. The ideas and the procedures for
de-noising and compression using wavelet packet decomposition are the
same as those used in the wavelets framework (see wden and wdencmp
for more information).

[XD,TREED,PERF0,PERFL2] =
wpdencmp(X,SORH,N,'wname',CRIT,PAR, KEEPAPP) returns a
de-noised or compressed version XD of input signal X (one- or
two-dimensional) obtained by wavelet packets coefficients thresholding.

The additional output argument TREED is the wavelet packet best tree
decomposition (see besttree for more information) of XD. PERFL2 and
PERF0 are L2 energy recovery and compression scores in percentages.

PERFL2 = 100 * (vector-norm of WP-cfs of XD / vector-norm of WP-cfs of
X)2.

If X is a one-dimensional signal and 'wname' an orthogonal wavelet,
PERFL2 is reduced to

100 2

2

XD

X

SORH ('s' or 'h') is for soft or hard thresholding (see wthresh for
more information).
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Wavelet packet decomposition is performed at level N and 'wname' is a
string containing the wavelet name. Best decomposition is performed
using entropy criterion defined by string CRIT and parameter PAR (see
wentropy for more information). Threshold parameter is also PAR.
If KEEPAPP = 1, approximation coefficients cannot be thresholded;
otherwise, they can be.

[XD,TREED,PERF0,PERFL2] = wpdencmp(TREE,SORH,CRIT,PAR,
KEEPAPP) has the same output arguments, using the same options
as above, but obtained directly from the input wavelet packet tree
decomposition TREE (see wpdec for more information) of the signal to be
de-noised or compressed.

In addition if CRIT = 'nobest' no optimization is done and the current
decomposition is thresholded.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original signal.
load sumlichr; x = sumlichr;

% Use wpdencmp for signal compression.
% Find default values (see ddencmp).
[thr,sorh,keepapp,crit] = ddencmp('cmp','wp',x)

thr =
0.5193

sorh =
h

keepapp =
1

crit =
threshold

% De-noise signal using global thresholding with

1-611



wpdencmp

% threshold best basis.
[xc,wpt,perf0,perfl2] = ...
wpdencmp(x,sorh,3,'db2',crit,thr,keepapp);

% Using some plotting commands,
% the following figure is generated.

% Load original image.
load sinsin

% Generate noisy image.
x = X/18 + randn(size(X));

% Use wpdencmp for image de-noising.
% Find default values (see ddencmp).
[thr,sorh,keepapp,crit] = ddencmp('den','wp',x)

thr =
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4.9685

sorh =
h
keepapp =

1

crit =
sure
% De-noise image using global thresholding with
% SURE best basis.
xd = wpdencmp(x,sorh,3,'sym4',crit,thr,keepapp);

% Using some plotting commands,
% the following figure is generated.

% Generate heavy sine and a noisy version of it.
init = 1000;
[xref,x] = wnoise(5,11,7,init);

% Use wpdencmp for signal de-noising.
n = length(x);
thr = sqrt(2*log(n*log(n)/log(2)));
xwpd = wpdencmp(x,'s',4,'sym4','sure',thr,1);

% Compare with wavelet-based de-noising result.
xwd = wden(x,'rigrsure','s','one',4,'sym4');

References Antoniadis, A.; G. Oppenheim, Eds. (1995), Wavelets and statistics,
Lecture Notes in Statistics, 103, Springer Verlag.

Coifman, R.R.; M.V. Wickerhauser (1992), “Entropy-based algorithms
for best basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp.
713–718.
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DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), “Image compression
through wavelet transform coding,” IEEE Trans. on Inf. Theory, vol.
38, No 2, pp. 719–746.

Donoho, D.L. (1993), “Progress in wavelet analysis and WVD: a ten
minute tour,” in Progress in wavelet analysis and applications, Y.
Meyer, S. Roques, pp. 109–128. Frontières Ed.

Donoho, D.L.; I.M. Johnstone (1994), “Ideal spatial adaptation by
wavelet shrinkage,” Biometrika, vol. 81, pp. 425–455.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995),
“Wavelet shrinkage: asymptopia,” Jour. Roy. Stat. Soc., series B, vol.
57 no. 2, pp. 301–369.

See Also besttree | ddencmp | wdencmp | wenergy | wpbmpen | wpdec | wpdec2
| wthresh
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Purpose Wavelet packet functions

Syntax [WPWS,X] = wpfun('wname',NUM,PREC)
[WPWS,X] = wpfun('wname',NUM)
[WPWS,X] = wpfun('wname',NUM,7)

Description wpfun is a wavelet packet analysis function.

[WPWS,X] = wpfun('wname',NUM,PREC) computes the wavelet packets
for a wavelet 'wname' (see wfilters for more information), on dyadic
intervals of length 2-PREC.

PREC must be a positive integer. Output matrix WPWS contains the W
functions of index from 0 to NUM, stored row-wise as [W0;W1; ... ;WNUM].
Output vector X is the corresponding common X-grid vector.

[WPWS,X] = wpfun('wname',NUM) is equivalent to
[WPWS,X] = wpfun('wname',NUM,7).

The computation scheme for wavelet packets generation is easy when
using an orthogonal wavelet. We start with the two filters of length 2N,
denoted h(n) and g(n), corresponding to the wavelet.

Now by induction let us define the following sequence of functions
(Wn(x) , n = 0,1,2,...) by

W x h k W x k

W x g k W x k

n n
k N

n n
k

2
0 2 1

2 1
0

2 2

2 2

( ) ( ) ( )

( ) ( ) ( )

, ,

,

= −

= −
= −

+
=

∑


,,2 1N −
∑

where W0(x) = ϕ (x) is the scaling function and W1(x) = ψ(x) is the
wavelet function.

For example for the Haar wavelet we have

N h h= = =1 0 1
1
2

, ( ) ( )
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and

g g( ) ( )0 1
1
2

= − =

The equations become

W x W x W xn n n2 2 2 1( ) ( ) ( )= + −

and

( ( ) ( ) ( ))W x W x W xn n n2 1 2 2 1+ = − −

W0(x) = ϕ(x) is the haar scaling function and W1(x) = ψ(x) is the haar
wavelet, both supported in [0,1].

Then we can obtain W2 n by adding two 1/2-scaled versions of Wn with
distinct supports [0,1/2] and [1/2,1], and obtain W2n+1 by subtracting
the same versions of Wn.

Starting from more regular original wavelets, using a similar
construction, we obtain smoothed versions of this system ofW-functions,
all with support in the interval [0, 2N-1].

Examples % Compute the db2 Wn functions for n = 0 to 7, generating
% the db2 wavelet packets.
[wp,x] = wpfun('db2',7);

% Using some plotting commands,
% the following figure is generated.
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References Coifman, R.R.; M.V. Wickerhauser (1992), “Entropy-based Algorithms
for best basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp.
713–718.

Meyer, Y. (1993), Les ondelettes. Algorithmes et applications, Colin
Ed., Paris, 2nd edition. (English translation: Wavelets: Algorithms
and applications, SIAM).

Wickerhauser, M.V. (1991), “INRIA lectures on wavelet packet
algorithms,” Proceedings ondelettes et paquets d’ondes, 17–21 June,
Rocquencourt, France, pp. 31–99.

Wickerhauser, M.V. (1994), Adapted wavelet analysis from theory to
software algorithms, A.K. Peters.

See Also wavefun | waveinfo
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Purpose Recompose wavelet packet

Syntax T = wpjoin(T,N)
[T,X] = wpjoin(T,N)
T = wpjoin(T)
T = wpjoin(T,0)
[T,X] = wpjoin(T)
[T,X] = wpjoin(T,0)

Description wpjoin is a one- or two-dimensional wavelet packet analysis function.

wpjoin updates the wavelet packet tree after the recomposition of
a node.

The nodes are numbered from left to right and from top to bottom. The
root index is 0.

T = wpjoin(T,N) returns the modified wavelet packet tree T
corresponding to a recomposition of the node N.

[T,X] = wpjoin(T,N) also returns the coefficients of the node.

T = wpjoin(T) is equivalent to T = wpjoin(T,0).

[T,X] = wpjoin(T) is equivalent to [T,X] = wpjoin(T,0).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal.
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets.
wpt = wpdec(x,3,'db1');

% Plot wavelet packet tree wpt.
plot(wpt)
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% Recompose packet (1,1) or 2
wpt = wpjoin(wpt,[1 1]);

% Plot wavelet packet tree wpt.
plot(wpt)

See Also wpdec | wpdec2 | wpsplt
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Purpose Reconstruct wavelet packet coefficients

Syntax X = wprcoef(T,N)
X = wprcoef(T)
X = wprcoef(T,0)

Description wprcoef is a one- or two-dimensional wavelet packet analysis function.

X = wprcoef(T,N) computes reconstructed coefficients of the node N of
the wavelet packet tree T.

X = wprcoef(T) is equivalent to X = wprcoef(T,0).

Examples % The current extension mode is zero-padding (see dwtmode)

% Load signal.
load noisdopp; x = noisdopp;

figure(1); subplot(211);
plot(x); title('Original signal');

% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.
t = wpdec(x,3,'db1','shannon');

% Plot wavelet packet tree.
plot(t)

1-620



wprcoef

% Reconstruct packet (2,1).
rcfs = wprcoef(t,[2 1]);

figure(1); subplot(212);
plot(rcfs); title('Reconstructed packet (2,1)');
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See Also wpdec | wpdec2 | wprec | wprec2

How To • “Reconstructing a Signal Approximation from a Node”
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Purpose Wavelet packet reconstruction 1-D

Syntax X = wprec(T)
wprec(wpdec(X,'wname'))

Description wprec is a one-dimensional wavelet packet analysis function.

X = wprec(T) returns the reconstructed vector X corresponding to a
wavelet packet tree T.

wprec is the inverse function of wpdec in the sense that the abstract
statement wprec(wpdec(X,'wname')) would give back X.

See Also wpdec | wpdec2 | wpjoin | wprec2 | wpsplt
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Purpose Wavelet packet reconstruction 2-D

Syntax X = wprec2(T)
wprec2(wpdec2(X,'wname'))

Description wprec2 is a two-dimensional wavelet packet analysis function.

X = wprec2(T) returns the reconstructed matrix X corresponding to a
wavelet packet tree T.

wprec2 is the inverse function of wpdec2 in the sense that the abstract
statement wprec2(wpdec2(X,'wname')) would give back X.

Tips If T is obtained from an indexed image analysis or a truecolor image
analysis, X is an m-by-n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo
reference pages.

See Also wpdec | wpdec2 | wpjoin | wprec | wpsplt
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Purpose Wavelet packet spectrum

Syntax [SPEC,TIMES,FREQ] = wpspectrum(WPT,Fs)
[...] = wpspectrum(WPT,Fs,'plot')
[...,TNFO] = wpspectrum(...)

Description [SPEC,TIMES,FREQ] = wpspectrum(WPT,Fs) returns a matrix of
wavelet packet spectrum estimates, SPEC, for the binary wavelet packet
tree object, WPT. Fs is the sampling frequency in Hertz. SPEC is a
2J-by-N matrix where J is the level of the wavelet packet transform and
N is the length of the time series. TIMES is a 1-by-N vector of times and
FREQ is a 1-by-2J vector of frequencies.

[...] = wpspectrum(WPT,Fs,'plot') displays the wavelet packet
spectrum.

[...,TNFO] = wpspectrum(...) returns the terminal nodes of the
wavelet packet tree in frequency order.

Input
Arguments

WPT

WPT is a binary wavelet packet tree of class wptree.

Fs

Sampling frequency in Hertz as a scalar of class double.

Default: 1

plot

The string 'plot' displays the wavelet packet spectrum. Enter 'plot'
after Fs to produce a plot of the wavelet packet spectrum.

Output
Arguments

SPEC

Wavelet packet spectrum. SPEC is a 2J-by-N matrix where J is the
level of the wavelet packet transform and N is the length of node 0
in the wavelet packet tree object.
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The frequency spacing between the rows of SPEC is Fs/2J+1.

TIMES

Time vector. TIMES is a vector of times in seconds equal in length to
node 0 of the wavelet packet tree object. The time spacing between
elements is 1/Fs.

FREQ

Frequency vector. FREQ is a vector of frequencies of length 2J where J
is the level of the wavelet packet tree object. The frequency spacing in
FREQ is Fs/2J+1.

TNFO

Terminal nodes. TNFO is a vector of the terminal nodes of the wavelet
packet tree object in frequency order.

Definitions Wavelet Packet Spectrum

The wavelet packet spectrum contains the absolute values of the
coefficients from the frequency-ordered terminal nodes of the input
binary wavelet packet tree. The terminal nodes provide the finest level
of frequency resolution in the wavelet packet transform. If J denotes the
level of the wavelet packet transform and Fs is the sampling frequency,
the terminal nodes approximate bandpass filters of the form:

[ ,
( )

) , , , ,
nFs n Fs

n
J J

J

2

1

2
0 1 2 3 2 1

1 1+ +
+ = … −

At the terminal level of the wavelet packet tree, the transform divides
the interval from 0 to the Nyquist frequency into bands of approximate

width Fs J/ .2 1+

Examples Wavelet packet spectrum for signal consisting of two sinusoids with
disjoint support:
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fs = 500;
t = 0:1/fs:4;
y = sin(32*pi*t).*(t<2) + sin(128*pi*t).*(t>=2);
subplot(2,1,1);
plot(t,y);
axis tight
title('Analyzed Signal');

% Wavelet packet spectrum
level = 6;
wpt = wpdec(y,level,'sym6');
subplot(2,1,2);
[S,T,F] = wpspectrum(wpt,fs,'plot');

Wavelet packet spectrum of chirp:

fs = 1000;
t = 0:1/fs:2;
% create chirp signal
y = sin(256*pi*t.^2);

% Plot the analyzed signal
subplot(2,1,1);
plot(t,y);
axis tight
title('Analyzed Signal');

% Wavelet packet spectrum
level = 6;
wpt = wpdec(y,level,'sym8');
subplot(2,1,2);
[S,T,F] = wpspectrum(wpt,fs,'plot');
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Algorithms wpspectrum computes the wavelet packet spectrum as follows:

• Extract the wavelet packet coefficients corresponding to the terminal
nodes. Take the absolute value of the coefficients.

• Order the wavelet packet coefficients by frequency ordering.

• Determine the time extent on the original time axis corresponding
to each wavelet packet coefficient. Repeat each wavelet packet
coefficient to fill in the time gaps between neighboring wavelet
packet coefficients and create a vector equal in length to node 0 of
the wavelet packet tree object.

References Wickerhauser, M.V. Lectures on Wavelet Packet Algorithms, Technical
Report, Washington University, Department of Mathematics, 1992.

See Also otnodes | wpdec

How To • “Wavelet Packet Spectrum”
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Purpose Split (decompose) wavelet packet

Syntax T = wpsplt(T,N)
[T,cA,cD] = wpsplt(T,N)
[T,cA,cH,cV,cD] = wpsplt(T,N)

Description wpsplt is a one- or two-dimensional wavelet packet analysis function.

wpsplt updates the wavelet packet tree after the decomposition of
a node.

T = wpsplt(T,N) returns the modified wavelet packet tree T
corresponding to the decomposition of the node N.

For a one-dimensional decomposition,

[T,cA,cD] = wpsplt(T,N) with cA = approximation and cD = detail of
node N.

For a two-dimensional decomposition,

[T,cA,cH,cV,cD] = wpsplt(T,N) with cA = approximation and
cH,cV,c = horizontal, vertical, and diagonal details of node N.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal.
load noisdopp;
x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets.
wpt = wpdec(x,3,'db1');

% Plot wavelet packet tree wpt.
plot(wpt)
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% Decompose packet (3,0).
wpt = wpsplt(wpt,[3 0]);
% or equivalently wpsplt(wpt,7).

% Plot wavelet packet tree wpt.
plot(wpt)

See Also wavedec | wavedec2 | wpdec | wpdec2 | wpjoin
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Purpose Wavelet packet coefficients thresholding

Syntax NT = wpthcoef(T,KEEPAPP,SORH,THR)

Description wpthcoef is a one- or two-dimensional de-noising and compression
utility.

NT = wpthcoef(T,KEEPAPP,SORH,THR) returns a new wavelet packet
tree NT obtained from the wavelet packet tree T by coefficients
thresholding.

If KEEPAPP = 1, approximation coefficients are not thresholded;
otherwise, they can be thresholded.

If SORH = 's', soft thresholding is applied; if SORH = 'h', hard
thresholding is applied (see wthresh for more information).

THR is the threshold value.

See Also wpdec | wpdec2 | wpdencmp | wthresh
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Purpose WPTREE constructor

Syntax T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,PARAMETER)
T = wptree(ORDER,DEPTH,X,WNAME)
T = wptree(ORDER,DEPTH,X,WNAME,'shannon')
T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,ENT_PAR,USERDATA)

Description T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,PARAMETER) returns a
complete wavelet packet tree T.

ORDER is an integer representing the order of the tree (the number of
“children” of each non terminal node). ORDER must be equal to 2 or 4.

If ORDER = 2, T is a WPTREE object corresponding to a wavelet packet
decomposition of the vector (signal) X, at level DEPTH with a particular
wavelet WNAME.

If ORDER = 4, T is a WPTREE object corresponding to a wavelet packet
decomposition of the matrix (image) X, at level DEPTH with a particular
wavelet WNAME.

ENT_TYPE is a string containing the entropy type and ENT_PAR is an
optional parameter used for entropy computation ( see wentropy, wpdec,
or wpdec2 for more information).

T = wptree(ORDER,DEPTH,X,WNAME) is equivalent to T =
wptree(ORDER,DEPTH,X,WNAME,'shannon')

With T =
wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,ENT_PAR,USERDATA) you
may set a userdata field.

The function wptree returns a WPTREE object.

For more information on object fields, see the get function or type

help wptree/get

Class WPTREE (Parent class: DTREE)
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Fields
'dtree' DTREE parent object

'wavInfo' Structure (wavelet information)

'entInfo' Structure (entropy information)

The wavelet information structure, 'wavInfo', contains

'wavName' Wavelet name

'Lo_D' Low Decomposition filter

'Hi_D' High Decomposition filter

'Lo_R' Low Reconstruction filter

'Hi_R' High Reconstruction filter

The entropy information structure, 'entInfo', contains

'entName' Entropy name

'entPar' Entropy parameter

Fields from the DTREE parent object:

’allNI’ All nodes information

'allNI' is an array of size nbnode by 5, which contains

ind Index

size Size of data

ent Entropy

ento Optimal entropy
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Each line is built based on the following scheme:

Examples % Create a wavelet packet tree.
x = rand(1,512);
t = wptree(2,3,x,'db3');
t = wpjoin(t,[4;5]);

% Plot tree t4.
plot(t);

% Click the node (3,0), (see the plot function).

See Also dtree | ntree
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Purpose Plot wavelet packets colored coefficients

Syntax wpviewcf(T,CMODE)
wpviewcf(T,CMODE,NBCOL)

Description wpviewcf(T,CMODE) plots the colored coefficients for the terminal nodes
of the tree T.

T is a wavelet packet tree and CMODE is an integer, which represents the
color mode. The color modes are listed in the table below.

Color Mode Description

1 Frequency order – Global coloration – Absolute
values

2 Frequency order – By level – Absolute values

3 Frequency order – Global coloration – Values

4 Frequency order – By level coloration – Values

5 Natural order – Global coloration – Absolute
values

6 Natural order – By level – Absolute values

7 Natural order – Global coloration – Values

8 Natural order – By level coloration – Values

wpviewcf(T,CMODE,NBCOL) uses NBCOL colors.

Examples % Create a wavelet packet tree.
x = sin(8*pi*[0:0.005:1]);
t = wpdec(x,3,'db1');

% Plot tree t.
% Click the node (3,0), (see the plot function)
plot(t);
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% Plot the colored wavelet packet coefficients.
wpviewcf(t,1);

See Also wpdec
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Purpose Reconstruct single branch from 1-D wavelet coefficients

Syntax X = wrcoef('type',C,L,'wname',N)
X = wrcoef('type',C,L,Lo_R,Hi_R,N)
X = wrcoef('type',C,L,'wname')
X = wrcoef('type',C,L,Lo_R,Hi_R)

Description wrcoef reconstructs the coefficients of a one-dimensional signal, given
a wavelet decomposition structure (C and L) and either a specified
wavelet ('wname', see wfilters for more information) or specified
reconstruction filters (Lo_R and Hi_R).

X = wrcoef('type',C,L,'wname',N) computes the vector of
reconstructed coefficients, based on the wavelet decomposition structure
[C,L] (see wavedec for more information), at level N. 'wname' is a string
containing the wavelet name.

Argument 'type' determines whether approximation ('type' = 'a')
or detail ('type' = 'd') coefficients are reconstructed. When 'type'
= 'a', N is allowed to be 0; otherwise, a strictly positive number N is
required. Level N must be an integer such that N ≤ length(L)-2.

X = wrcoef('type',C,L,Lo_R,Hi_R,N) computes coefficients as
above, given the reconstruction filters you specify.

X = wrcoef('type',C,L,'wname') and X =
wrcoef('type',C,L,Lo_R,Hi_R) reconstruct coefficients of maximum
level N = length(L)-2.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load a one-dimensional signal.
load sumsin; s = sumsin;

% Perform decomposition at level 5 of s using sym4.
[c,l] = wavedec(s,5,'sym4');

% Reconstruct approximation at level 5,
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% from the wavelet decomposition structure [c,l].
a5 = wrcoef('a',c,l,'sym4',5);

% Using some plotting commands,
% the following figure is generated.

See Also appcoef | detcoef | wavedec
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Purpose Reconstruct single branch from 2-D wavelet coefficients

Syntax X = wrcoef2('type',C,S,'wname',N)
X = wrcoef2('type',C,S,Lo_R,Hi_R,N)
X = wrcoef2('type',C,S,'wname')
X = wrcoef2('type',C,S,Lo_R,Hi_R)

Description wrcoef2 is a two-dimensional wavelet analysis function. wrcoef2
reconstructs the coefficients of an image.

X = wrcoef2('type',C,S,'wname',N) computes the matrix of
reconstructed coefficients of level N, based on the wavelet decomposition
structure [C,S] (see wavedec2 for more information).

'wname' is a string containing the name of the wavelet (see wfilters
for more information). If 'type' = 'a', approximation coefficients are
reconstructed; otherwise if 'type' = 'h' ('v' or 'd', respectively),
horizontal (vertical or diagonal, respectively) detail coefficients are
reconstructed.

Level N must be an integer such that 0 ≤ N ≤ size(S,1)-2 if 'type' =
'a' and such that 1 ≤ N ≤ size(S,1)-2 if 'type' = 'h', 'v', or 'd'.

Instead of giving the wavelet name, you can give the filters.

For X = wrcoef2('type',C,S,Lo_R,Hi_R,N), Lo_R is the
reconstruction low-pass filter and Hi_R is the reconstruction high-pass
filter.

X = wrcoef2('type',C,S,'wname') or X =
wrcoef2('type',C,S,Lo_R,Hi_R) reconstruct coefficients of maximum
level N = size(S,1)-2.

Tips If C and S are obtained from an indexed image analysis (respectively
a truecolor image analysis) then X is an m-by-n matrix (respectively an
m-by-n-by-3 array).

For more information on image formats, see the reference pages of
image and imfinfo functions.
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Examples % The current extension mode is zero-padding (see dwtmode).

% Load an image.
load woman;
% X contains the loaded image.

% Perform decomposition at level 2
% of X using sym5.
[c,s] = wavedec2(X,2,'sym5');

% Reconstruct approximations at
% levels 1 and 2, from the wavelet
% decomposition structure [c,s].
a1 = wrcoef2('a',c,s,'sym5',1);
a2 = wrcoef2('a',c,s,'sym5',2);

% Reconstruct details at level 2,
% from the wavelet decomposition
% structure [c,s].
% 'h' is for horizontal,
% 'v' is for vertical,
% 'd' is for diagonal.
hd2 = wrcoef2('h',c,s,'sym5',2);
vd2 = wrcoef2('v',c,s,'sym5',2);
dd2 = wrcoef2('d',c,s,'sym5',2);

% All these images are of same size sX.
sX = size(X)

sX =
256 256

sa1 = size(a1)

sa1 =
256 256
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shd2 = size(hd2)

shd2 =
256 256

See Also appcoef2 | detcoef2 | wavedec2
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Purpose Flip vector

Syntax Y = wrev(X)

Description wrev is a general utility.

Y = wrev(X) reverses the vector X.

Examples v = [1 2 3];
wrev(v)
wrev(v')

See Also fliplr | flipud
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Purpose Write values in WPTREE fields

Syntax T = write(T,'cfs',NODE,COEFS)
T = write(T,'cfs',N1,CFS1,'cfs',N2,CFS2, ...)

Description T = write(T,'cfs',NODE,COEFS) writes coefficients for the terminal
node NODE.

T = write(T,'cfs',N1,CFS1,'cfs',N2,CFS2, ...) writes
coefficients CFS1, CFS2, ... for the terminal nodes N1, N2, ....

Caution The coefficients values must have the suitable size. You can
use S = read(T,'sizes',NODE) or S = read(T,'sizes',[N1;N2;
...]) in order to get those sizes.

Examples % Create a wavelet packet tree.
load noisdopp; x = noisdopp;
t = wpdec(x,3,'db3');
t = wpjoin(t,[4;5]);

% Plot tree t and click the node (0,0) (see the plot function).
plot(t);
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% Write values.
sNod = read(t,'sizes',[4,5,7]);
cfs4 = zeros(sNod(1,:));
cfs5 = zeros(sNod(2,:));
cfs7 = zeros(sNod(3,:));
t = write(t,'cfs',4,cfs4,'cfs',5,cfs5,'cfs',7,cfs7);

% Plot tree t and click the node (0,0) (see the plot function).
plot(t)
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See Also disp | get | read | set
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Purpose Scalogram for continuous wavelet transform

Syntax SC = wscalogram(TYPEPLOT,COEFS)
SC = wscalogram(TYPEPLOT,COEFS,'PropName1',PropVal1,...)

Description SC = wscalogram(TYPEPLOT,COEFS) computes the scalogram SC which
represents the percentage of energy for each coefficient. COEFS is the
matrix of the continuous wavelet coefficients (see cwt).

The scalogram is obtained by computing:

S = abs(coefs.*coefs); SC = 100*S./sum(S(:))

When TYPEPLOT is equal to 'image', a scaled image of scalogram
is displayed. When TYPEPLOT is equal to 'contour', a contour
representation of scalogram is displayed. Otherwise, the scalogram is
returned without plot representation.

SC = wscalogram(TYPEPLOT,COEFS,'PropName1',PropVal1,...)
allows you to modify some properties. The valid choices for PropName
are:

'scales' Scales used for the CWT.

'ydata' Signal used for the CWT.

'xdata' x values corresponding to the signal values.

'power' Positive real value. Default value is zero.

If power > 0, coefficients are first normalized

coefs(k,:) = coefs(k,:)/(scales(k)^power)

and then the scalogram is computed as explained above.

Examples % Compute signal s
t = linspace(-1,1,512);
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s = 1-abs(t);

% Plot signal s
figure;
plot(s), axis tight

% Compute coefficients COEFS using cwt
COEFS = cwt(s,1:32,'cgau4');

% Compute and plot the scalogram (image option)
figure;
SC = wscalogram('image',COEFS);
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% Compute and plot the scalogram (contour option)
figure;
SC = wscalogram('contour',COEFS);

See Also cwt
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Purpose WTBO constructor

Syntax OBJ = wtbo
OBJ = wtbo(USERDATA)

Description OBJ = wtbo returns a WTBO object. Any object in the Wavelet Toolbox
software is parented by a WTBO object.

With OBJ = wtbo(USERDATA) you can set a userdata field.

Class WTBO (Parent class: none)

Fields wtboInfo Object information (not used in the current
version of the toolbox)

ud Userdata field
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Purpose Wavelet Toolbox manager

Syntax wtbxmngr(OPTION)
V = wtbxmngr('version')

Description wtbxmngr or wtbxmngr('version') displays the current version of
Wavelet Toolbox software.

wtbxmngr(OPTION) sets a toolbox option. Available options are

Option Description

'LargeFonts' Sets the size of future-created figures to use
large fonts.

'DefaultSize' Restores the default figure size for future-
created figures.

'FigRatio' Returns the current figure ratio value.

'FigRatio',ratio Changes the size of future-created figures by
multiplying the default size by the specified
ratio, where ratio must be between 0.75 and
1.25.

V = wtbxmngr('version') saves the current version of the toolbox to
variable V.

Examples wtbxmngr('version')

*************************************
** Wavelet Toolbox Version: V3.1 **
*************************************

wtbxmngr('FigRatio') % Display the current figure ratio
wtbxmngr('FigRatio',1.25) % Set the figure ratio to 1.25
wtbxmngr('FigRatio') % Display the current figure ratio
wtbxmngr('DefaultSize') % Return to the default figure ratio
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Purpose Wavelet coefficient thresholding 1-D

Syntax NC = wthcoef('d',C,L,N,P)
NC = wthcoef('d',C,L,N)
NC = wthcoef('a',C,L)
NC = wthcoef('t',C,L,N,T,SORH)

Description wthcoef is a one-dimensional de-noising and compression oriented
function.

NC = wthcoef('d',C,L,N,P) returns coefficients obtained from
the wavelet decomposition structure [C,L] (see wavedec for more
information), by rate compression defined in vectors N and P. N contains
the detail levels to be compressed and P the corresponding percentages
of lower coefficients to be set to zero. N and P must be of same length.
Vector N must be such that 1 ≤ N(i) ≤ length(L)-2.

NC = wthcoef('d',C,L,N) returns coefficients obtained from [C,L] by
setting all the coefficients of detail levels defined in N to zero.

NC = wthcoef('a',C,L) returns coefficients obtained by setting
approximation coefficients to zero.

NC = wthcoef('t',C,L,N,T,SORH) returns coefficients obtained from
the wavelet decomposition structure [C,L] by soft (if SORH ='s') or
hard (if SORH ='h') thresholding (see wthresh for more information)
defined in vectors N and T. N contains the detail levels to be thresholded
and T the corresponding thresholds. N and T must be of the same length.

[NC,L] is the modified wavelet decomposition structure.

See Also wavedec | wthresh
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Purpose Wavelet coefficient thresholding 2-D

Syntax NC = wthcoef2('type',C,S,N,T,SORH)
NC = wthcoef2('type',C,S,N)
NC = wthcoef2('a',C,S)
NC = wthcoef2('t',C,S,N,T,SORH)

Description wthcoef2 is a two-dimensional de-noising and compression oriented
function.

For 'type' = 'h' ( 'v' or 'd'), NC = wthcoef2('type',C,S,N,T,SORH)
returns the horizontal (vertical or diagonal, respectively) coefficients
obtained from the wavelet decomposition structure [C,S] (see wavedec2
for more information), by soft (if SORH ='s') or hard (if SORH ='h')
thresholding defined in vectors N and T. N contains the detail levels to be
thresholded and T the corresponding thresholds. N and T must be of the
same length. The vector N must be such that 1 ≤ N(i) ≤ size(S,1)-2.

For 'type' = 'h' ('v' or 'd'), NC = wthcoef2('type',C,S,N) returns
the horizontal (vertical or diagonal, respectively) coefficients obtained
from [C,S] by setting all the coefficients of detail levels defined in N
to zero.

NC = wthcoef2('a',C,S) returns the coefficients obtained by setting
approximation coefficients to zero.

NC = wthcoef2('t',C,S,N,T,SORH) returns the detail coefficients
obtained from the wavelet decomposition structure [C,S] by soft (if
SORH ='s') or hard (if SORH ='h') thresholding (see wthresh for more
information) defined in vectors N and T. N contains the detail levels to be
thresholded and T the corresponding thresholds which are applied in
the three detail orientations. N and T must be of the same length.

[NC,S] is the modified wavelet decomposition structure.

See Also wavedec2 | wthresh
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Purpose Soft or hard thresholding

Syntax Y = wthresh(X,SORH,T)
Y = wthresh(X,'s',T)
Y = wthresh(X,'h',T)

Description Y = wthresh(X,SORH,T) returns the soft (if SORH = 's') or hard (if
SORH = 'h') thresholding of the input vector or matrix X. T is the
threshold value.

Y = wthresh(X,'s',T) returns , soft
thresholding is wavelet shrinkage ( (x)+ = 0 if x < 0; (x)+ = x, if x ≥ 0 ).

Y = wthresh(X,'h',T) returns , hard thresholding is
cruder.

Examples % Generate signal and set threshold.
y = linspace(-1,1,100);
thr = 0.4;

% Perform hard thresholding.
ythard = wthresh(y,'h',thr);

% Perform soft thresholding.
ytsoft = wthresh(y,'s',thr);

% Using some plotting commands,
% the following figure is generated.
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See Also wden | wdencmp | wpdencmp
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Purpose Threshold settings manager

Syntax THR = wthrmngr(OPTION,METHOD,VARARGIN)

Description THR = wthrmngr(OPTION,METHOD,VARARGIN) returns a global threshold
or level dependent thresholds depending on OPTION. The inputs,
VARARGIN, depend on the OPTION and METHOD values.

This file returns the thresholds used throughout the Wavelet Toolbox
software for de-noising and compression tools (command line files or
GUI tools).

Valid options for the METHOD parameter are listed in the table below.

METHOD Description

'scarcehi' See wdcbm or wdcbm2 when used with 'high'
predefined value of parameter M.

'scarceme' See wdcbm or wdcbm2 when used with 'medium'
predefined value of parameter M.

'scarcelo' See wdcbm or wdcbm2 when used with 'low'
predefined value of parameter M.

'sqtwolog' See 'sqtwolog' option in thselect, and see
also wden.

'sqtwologuwn' See ’sqtwolog’ option in thselect, and see also
wden when used with ’sln’ option.

'sqtwologswn' See 'sqtwolog' option in thselect, and see
also wden when used with 'mln' option.

'rigsure' See 'rigsure' option in thselect, and see
also wden.

'heursure' See 'heursure' option in thselect, and see
also wden.

'minimaxi' See 'minimaxi' option in thselect, and see
also wden.
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METHOD Description

'penalhi' See wbmpen or wpbmpen when used with 'high'
value of parameter ALPHA.

'penalme' See wbmpen or wpbmpen when used with
'medium' value of parameter ALPHA.

'penallo' See wbmpen or wpbmpen when used with 'low'
value of parameter ALPHA.

'rem_n0' This option returns a threshold close to 0. A
typical THR value is median(abs(coefficients)).

'bal_sn' This option returns a threshold such that the
percentages of retained energy and number of
zeros are the same.

'sqrtbal_sn' This option returns a threshold equal to
the square root of the value such that the
percentages of retained energy and number of
zeros are the same.

Discrete Wavelet 1-D Options

For 1–D wavelet transforms, the expansion coefficients are in the vector
C and the lengths of the expansion coefficient vectors are stored in L.

Compression using a global threshold.
X is the signal to be compressed and [C,L] is the wavelet decomposition
structure of the signal to be compressed.

THR = wthrmngr('dw1dcompGBL','rem_n0',X)
THR = wthrmngr('dw1dcompGBL','bal_sn',X)

Compression using level dependent thresholds.
X is the signal to be compressed and [C,L] is the wavelet decomposition
structure of the signal to be compressed.

ALFA is a sparsity parameter (see wdcbm for more information).
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THR = wthrmngr('dw1dcompLVL','scarcehi',C,L,ALFA)
ALFA must be such that 2.5 < ALFA < 10

THR = wthrmngr('dw1dcompLVL','scarceme',C,L,ALFA)
ALFA must be such that 1.5 < ALFA < 2.5

THR = wthrmngr('dw1dcompLVL','scarcelo',C,L,ALFA)
ALFA must be such that 1 < ALFA < 2

De-noising using level dependent thresholds.
[C,L] is the wavelet decomposition structure of the signal to be
de-noised, SCAL defines the multiplicative threshold rescaling (see wden
for more information) and ALFA is a sparsity parameter (see wbmpen for
more information).

THR = wthrmngr('dw1ddenoLVL','sqtwolog',C,L,SCAL)
THR = wthrmngr('dw1ddenoLVL','rigrsure',C,L,SCAL)
THR = wthrmngr('dw1ddenoLVL','heursure',C,L,SCAL)
THR = wthrmngr('dw1ddenoLVL','minimaxi',C,L,SCAL)
THR = wthrmngr('dw1ddenoLVL','penalhi',C,L,ALFA)

ALFA must be such that 2.5 < ALFA < 10
THR = wthrmngr('dw1ddenoLVL','penalme',C,L,ALFA)

ALFA must be such that 1.5 < ALFA < 2.5
THR = wthrmngr('dw1ddenoLVL','penallo',C,L,ALFA)

ALFA must be such that 1 < ALFA < 2

Discrete Stationary Wavelet 1-D Options
De-noising using level dependent thresholds.
SWTDEC is the stationary wavelet decomposition structure of the signal
to be de-noised, SCAL defines the multiplicative threshold rescaling
(see wden for more information) and ALFA is a sparsity parameter (see
wbmpen for more information).

THR = wthrmngr('sw1ddenoLVL',METHOD,SWTDEC,SCAL)
THR = wthrmngr('sw1ddenoLVL',METHOD,SWTDEC,ALFA)

The options for METHOD are the same as in the 'dw1ddenoLVL'case.
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Discrete Wavelet 2-D Options

For 2–D wavelet transforms, the expansion coefficients are in the vector
C and the size of the coefficient matrices at each level is stored in S.

Compression using a global threshold.
X is the image to be compressed and [C,S] is the wavelet decomposition
structure of the image to be compressed.

THR = wthrmngr('dw2dcompGBL','rem_n0',X)
THR = wthrmngr('dw2dcompGBL','bal_sn',C,S)
THR = wthrmngr('dw2dcompGBL','sqrtbal_sn',C,S)

Compression using level dependent thresholds.
X is the image to be compressed and [C,S] is the wavelet decomposition
structure of the image to be compressed. ALFA is a sparsity parameter
(see wdcbm2 for more information).

THR = wthrmngr('dw2dcompLVL','scarcehi',C,S,ALFA)
ALFA must be such that 2.5 < ALFA < 10

THR = wthrmngr('dw2dcompLVL','scarceme',C,S,ALFA)
ALFA must be such that 1.5 < ALFA < 2.5

THR = wthrmngr('dw2dcompLVL','scarcelo',C,S,ALFA)
ALFA must be such that 1 < ALFA < 2

De-noising using level dependent thresholds.
[C,S] is the wavelet decomposition structure of the image to be
de-noised, SCAL defines the multiplicative threshold rescaling (see wden
for more information) and ALFA is a sparsity parameter (see wbmpen for
more information).

THR = wthrmngr('dw2ddenoLVL','penalhi',C,S,ALFA)
ALFA must be such that 2.5 < ALFA < 10

THR = wthrmngr('dw2ddenoLVL','penalme',C,S,ALFA)
ALFA must be such that 1.5 < ALFA < 2.5

THR = wthrmngr('dw2ddenoLVL','penallo',C,S,ALFA)
ALFA must be such that 1 < ALFA < 2

THR = wthrmngr('dw2ddenoLVL','sqtwolog',C,S,SCAL)
THR = wthrmngr('dw2ddenoLVL','sqrtbal_sn',C,S)
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Discrete Stationary Wavelet 2-D Options
De-noising using level dependent thresholds.
SWTDEC is the stationary wavelet decomposition structure of the image
to be de-noised, SCAL defines the multiplicative threshold rescaling
(see wden for more information) and ALFA is a sparsity parameter (see
wbmpen for more information).

THR = wthrmngr('sw2ddenoLVL',METHOD,SWTDEC,SCAL)
THR = wthrmngr('sw2ddenoLVL',METHOD,SWTDEC,ALFA)

The options for METHOD are the same as in the 'dw2ddenoLVL' case.

Discrete Wavelet Packet 1-D Options
Compression using a global threshold.
X is the signal to be compressed and WPT is the wavelet packet
decomposition structure of the signal to be compressed.

THR = wthrmngr('wp1dcompGBL','bal_sn',WPT)
THR = wthrmngr('wp1dcompGBL','rem_n0',X)

De-noising using a global threshold.
WPT is the wavelet packet decomposition structure of the signal to be
de-noised.

THR = wthrmngr('wp1ddenoGBL','sqtwologuwn',WPT)
THR = wthrmngr('wp1ddenoGBL','sqtwologswn',WPT)
THR = wthrmngr('wp1ddenoGBL','bal_sn',WPT)
THR = wthrmngr('wp1ddenoGBL','penalhi',WPT)

see wbmpen with ALFA = 6.25
THR = wthrmngr('wp1ddenoGBL','penalme',WPT)

see wbmpen with ALFA = 2
THR = wthrmngr('wp1ddenoGBL','penallo',WPT)

see wbmpen with ALFA = 1.5
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Discrete Wavelet Packet 2-D Options
Compression using a global threshold.
X is the image to be compressed and WPT is the wavelet packet
decomposition structure of the image to be compressed.

THR = wthrmngr('wp2dcompGBL','bal_sn',WPT)
THR = wthrmngr('wp2dcompGBL','rem_n0',X)
THR = wthrmngr('wp2dcompGBL','sqrtbal_sn',WPT)

De-noising using a global threshold.
WPT is the wavelet packet decomposition structure of the image to be
de-noised.

THR = wthrmngr('wp2ddenoGBL','sqtwologuwn',WPT)
THR = wthrmngr('wp2ddenoGBL','sqtwologswn',WPT)
THR = wthrmngr('wp2ddenoGBL','sqrtbal_sn',WPT)
THR = wthrmngr('wp2ddenoGBL','penalhi',WPT)

see wbmpen with ALFA = 6.25
THR = wthrmngr('wp2ddenoGBL','penalme',WPT)

see wbmpen with ALFA = 2
THR = wthrmngr('wp2ddenoGBL','penallo',WPT)

see wbmpen with ALFA = 1.5

Examples Level-Independent Threshold — Stationary Wavelet
Transform

This example uses a level-independent threshold based on the
finest-scale wavelet coefficients to implement hard thresholding with
the stationary wavelet transform.

Load the noisy blocks signal. Obtain the stationary wavelet transform
down to level 5 using the Haar wavelet.

load noisbloc;
L = 5;
swc = swt(noisbloc,L,'db1');
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Make a copy of the wavelet transform coefficients. Determine the
Donoho-Johnstone universal threshold based on the first-level detail
coefficients. Using the 'sln' option, wthrmngr returns a 1-by-L vector
with every element equal to the same value. Take the mean of the
vector to obtain a scalar threshold.

swcnew = swc;
ThreshSL = mean(wthrmngr('sw1ddenoLVL','sqtwolog',swc,'sln'));

Use the universal threshold to implement hard thresholding. The same
threshold is applied to the wavelet coefficients at every level.

for jj = 1:L
swcnew(jj,:) = wthresh(swc(jj,:),'h',ThreshSL);
end

Invert the stationary wavelet transform on the thresholded coefficients,
swcnew. Plot the original signal and the denoised signal for comparison.

noisbloc_denoised = iswt(swcnew,'db1');
plot(noisbloc); hold on;
plot(noisbloc_denoised,'r','linewidth',2);

Level-Dependent Threshold — Stationary Wavelet Transform

This example uses a level-dependent threshold derived from the wavelet
coefficients at each scale to implement hard thresholding with the
stationary wavelet transform.

Load the noisy blocks signal. Obtain the stationary wavelet transform
down to level 5 using the Haar wavelet.

load noisbloc;
L = 5;
swc = swt(noisbloc,L,'db1');

Make a copy of the wavelet transform coefficients. Determine the
Donoho-Johnstone universal threshold based on the detail coefficients
for each scale. Using the 'mln' option, wthrmngr returns a 1-by-L
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vector with each element of the vector equal to the universal threshold
for the corresponding scale.

swcnew = swc;
ThreshML = wthrmngr('sw1ddenoLVL','sqtwolog',swc,'mln');

Use the universal thresholds to implement hard thresholding. The
thresholds are applied in a scale-dependent manner.

for jj = 1:L
swcnew(jj,:) = wthresh(swc(jj,:),'h',ThreshML(jj));
end

Invert the stationary wavelet transform on the thresholded coefficients,
swcnew. Plot the original signal and the denoised signal for comparison.

noisbloc_denoised = iswt(swcnew,'db1');
plot(noisbloc); hold on;
plot(noisbloc_denoised,'r','linewidth',2);

Image Compression— Birgé-Massart Thresholds

This example compresses an image using the Birgé-Massart strategy.

Load the image and add white Gaussian noise.

load sinsin
x = X+18*randn(size(X));

Obtain the 2-D discrete wavelet transform down to level 2 using the
Daubechies’ least-asymmetric wavelet with 8 vanishing moments.
Obtain the compression thresholds using the Birgé-Massart strategy
with alpha equal to 2.

[C,L] = wavedec2(x,2,'sym8');
alpha = 2;
THR = wthrmngr('dw2dcompLVL','scarcehi',C,L,alpha);

Compress the image and display the result.

1-663



wthrmngr

Xd = wdencmp('lvd',X,'sym8',2,THR,'s');
image(X); title('Original image');
figure;
image(x); title('Noisy image');
figure;
image(Xd); title('Denoised image');

1-664



wtreemgr

Purpose NTREE manager

Syntax

Description wtreemgr is a tree management utility.

This function returns information on the tree T depending on the value
of the OPT parameter.

Allowed values for OPT are listed in the table below.

'allnodes' Tree nodes

'isnode' True for existing node

'istnode' True for terminal nodes

'nodeasc' Node ascendants

'nodedesc' Node descendants

'nodepar' Node parent

'ntnode' Number of terminal nodes

'tnodes' Terminal nodes

'leaves' Terminal nodes

'noleaves' Not terminal nodes

'order' Tree order

'depth' Tree depth

The functionality associated with the OPT value you specify is described
in the functions listed in the “See Also” section.

See Also allnodes | isnode | istnode | leaves | nodeasc | nodedesc |
nodepar | noleaves | ntnode | tnodes | treedpth | treeord
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Purpose Find variance change points

Syntax [PTS_OPT,KOPT,T_EST] = wvarchg(Y,K,D)

Description [PTS_OPT,KOPT,T_EST] = wvarchg(Y,K,D) computes estimated
variance change points for the signal Y for j change points, with j = 0,
1, 2, ... , K.

Integer D is the minimum delay between two change points.

Integer KOPT is the proposed number of change points (0 ≤ KOPT ≤ K).
The vector PTS_OPT contains the corresponding change points.

For 1 ≤ k ≤ K, T_EST(k+1,1:k) contains the k instants of
the variance change points and then, if KOPT > 0, PTS_OPT =
T_EST(KOPT+1,1:KOPT) else PTS_OPT = [].

K and D must be integers such that 1 < K << length(Y) and 1 ≤ D <<
length(Y).

The signal Y should be zero mean.

wvarchg(Y,K) is equivalent to wvarchg(Y,K,10).

wvarchg(Y) is equivalent to wvarchg(Y,6,10).

Examples Detect Variance Change Points

Add two variance change points to the blocks signal. Detect the variance
change points using wvarchg.

Load the blocks signal. Add white noise with two variance change
points located at index 180 and 600.

x = wnoise(1,10);
rng default;
bb = 1.5*randn(1,length(x));
cp1 = 180; cp2 = 600;
x = x + [bb(1:cp1),bb(cp1+1:cp2)/4,bb(cp2+1:end)];
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Obtain the level-1 wavelet coefficients. Replace the top 2% of values
with the mean value of the wavelet coefficients to remove all signal.

wname = 'db3'; lev = 1;
[c,l] = wavedec(x,lev,wname);
det = wrcoef('d',c,l,wname,1);
y = sort(abs(det));
v2p100 = y(fix(length(y)*0.98));
ind = find(abs(det)>v2p100);
det(ind) = mean(det);

Estimate the variance change points using the wavelet coefficients.

[pts_Opt,kopt,t_est] = wvarchg(det,5);
sprintf('The estimated change points are %d and %d\n',pts_Opt)

References Lavielle, M. (1999), “Detection of multiple changes in a sequence of
dependent variables,” Stoch. Proc. and their Applications, 83, 2, pp.
79–102.
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